검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,003

        101.
        2022.10 구독 인증기관·개인회원 무료
        In this study, the process of compressing/packaging the spent filters of Kori Unit 1, which was conceptually presented in the previous study, is advanced so that disposal suitability for each step can be secure efficiently. In particular, the differences between the previous study and this study are that the disposable filters are screened using an In-Situ Object Counting System (ISOCS), and the method of collecting representative samples for development of scaling factor is specified. The process of compressing/packaging the spent filters consists of 7 stages as follows. 1) Collecting: The spent filters temporarily stored in the filter room are collected by dose and type remotely using a robot system to minimize the radiation exposure of workers according to a pre-established packaging plan. 2) Screening: The gamma activity concentration of the spent filters received by the robot system is measured by ISOCS. The spent filters below the low-level waste concentration limit and the surface dose are transferred into the compression system, while the others are returned in the filter room again. 3) Sampling: The external perforator drilling/cutting the filter was developed for sampling required for the new scaling factors. Since the sampling is collected remotely, the risk of exposure to workers can be reduced. The newly developed scaling factor will be used to verify the disposal suitability of the packages. 4) Compression: According to the pre-established plan, the spent filter collected by dose and type, is supplied to the compression system considering the dose and radionuclide inventory. Whether to additionally store the compressed filter in the drum is determined by checking the accumulated dose. 5) Immobilization: Immobilization with a safety material is necessary when inhomogeneous wastes, like spent filters, have the total radionuclide concentration with a half-life of more than 20 years is 74,000 Bq/g or more and for filling rate or non-dispersible treatment of particulates. 6) Packaging and Analysis: Waste information is labelled onto the package after the measurements of surface dose rate and surface contamination. Finally, using the drum assay system, the gamma radionuclide concentration is measured to identify at least 95% of the total radioactivity concentration of the package. 7) Temporary Storage and Delivery: The packages are moved to temporary storage in the plant prior to disposal. After establishing the plan for delivery and applying for a takeover request to KORAD, if the acceptance inspection is passed, the packages are transported to the disposal facility.
        103.
        2022.10 구독 인증기관·개인회원 무료
        Cellulose-based wastes can be degraded into short-chain organic acids at the cementitious radioactive waste repository. Isosaccharinic acid (ISA), one of the main degradation products, can form the chelate complex with metals and radionuclides, and these complexes have a potential that can accelerate to move the radionuclides to far-field from the repository. This study characterized the amount of generated ISA from typical cellulosic materials in the repository. Two different degradation experiments were conducted under alkaline conditions (saturated with Ca(OH)2 at pH 12.4): i) cellulosic material mixture under an opened condition (partially aerobic), and ii) cellulosic material under an anaerobic condition in a nitrogen-purged glove box. In the first case, three different types of cellulosic materials–paper, cotton, and wood– were mixed at the same ratio, and the experiments were carried out at three different temperatures (20°C, 40°C, and 60°C). It revealed that both the cellulose degradation rate and generated ISA concentration were high at high reaction temperatures, and various soluble degradation products such as formic acid and lactic acid were generated. The cellulose degradation in this work seems to still stay at a peeling-off process. In the second study, each type of cellulosic material was applied in its own batch experiments, and the amount of generated ISA was in the order of paper > wood > cotton. The above two experiments are supposed to be a long-term study until the generated ISA reaches an equilibrium state.
        104.
        2022.10 구독 인증기관·개인회원 무료
        Korea Radioactive Waste Agency (KORAD), regulatory body and civic groups are calling for an infrastructure system that can more systematically and safely manage data on the results of radioactive waste sampling and nuclide analysis in accordance with radioactive waste disposal standards. To solve this problem, a study has been conducted on the analysis of the nuclide pattern of radioactive waste on the nuclide data contained in low-and intermediate-level radioactive waste. This paper will explain the optimal repackaged algorithm for reducing radioactive waste based on previous research results. The optimal repackaged algorithm for radioactive waste reduction is comprised based on nuclide pattern association indicators, classification by nuclide level of small-packaged waste, and nuclide concentration. Optimization simulation is carried out in the order of deriving nuclide concentration by small-packaged, normalizing drum minimization as a function of purpose, normalizing constraints, and optimization. Two scenarios were applied to the simulation. In Scenario 1 (generating facilities and repackaged by medium classification without optimization), it was assumed that there are 886 low-level drums and 52 very low-level drums. In Scenario 2 (generating facilities and repackaged by medium classification with optimization), 708 and 230 drums were assigned to the low-level and very low-level drums, respectively. As a result of the simulation, when repackaged in consideration of the nuclide concentration and constraints according to the generating facility cluster & middle classification by small package (Scenario 2) the low-level drum had the effect of reducing 178 drums from the baseline value of 886 drums to 708 drums. It was found that the reduced packages were moved to the very low-level drum. The system that manages the full life-cycle of radioactive waste can be operated effectively only when the function of predicting or tracking the occurrence of radioactive waste drums from the source of radioactive waste to the disposal site is secured. If the main factors affecting the concentration and pattern of nuclides are systematically managed through these systems, the system will be used as a useful tool for policy decisions that can prevent human error and drastically reduce the generation of disposable drums.
        106.
        2022.10 구독 인증기관·개인회원 무료
        There are generally two kinds of spent filter; one is spent filter media for mainly gaseous purification such as HEPA filter, the other is spent filter cartridge for liquid purification such as CVCS BRS cartridge type filter. The spent filter cartridge from liquid purification system has been storing in special shielding space in auxiliary building in NPPs since the beginning of 2006 according to the long term storage strategy for decaying short lived radionuclide and gaining the time for selecting practical treatment technology before final packaging. The spent filter cartridges generated Kori-1 reactor vary in their sizes as in length from 913 mm to 290 mm and range in radiation level from several hundred mSv per hour to below mSv per hour . It is high time that the spent filter cartridge is treated and packaged because LILW repository in Wolsung area is operating and Kori-1 reactor is scheduled to decommission. The spent filter cartridge is one of the wet solid wastes required of solidification. It is difficult for the spent filter cartridge to solidify because of their shape, structure, physical and chemical characteristics in addition to having high radiation level. NSSC notice defines that solidification of wet solid wastes include that solid material such as spent filter is encapsulated with cement, etc. as a form of macro-encapsulation. The radioactive waste acceptance criteria describes that non-homogeneous waste having above 74,000 Bq/g such as spent filter, dry active waste should be encapsulated with qualified material. Homogeneous waste such as spent resin, sludge, concentrated waste (liquid waste evaporator bottoms), etc. should be solidified complied with requirements except that spent filter which is allowed to encapsulate. It is needed to guide to the practice of these two requirements for spent filter. The sampling and test method is different between homogeneous solidification waste form and spent filter cartridge encapsulation waste form. For example, how core sample can be taken and how void space can be measured among spent filter cartridge in encapsulation waste form. The technical evaluation report for spent filter cartridge polymer encapsulation by US NRC has been reviewed and the technical position of US NRC was identified. As a result of review, improvement fields of waste acceptance criteria for spent filters are pointed out, and the technical position of US NRC for spent filter cartridge solidification is summarized. The recommendation on improvement directions for spent filter cartridge encapsulation is suggested.
        114.
        2022.10 구독 인증기관·개인회원 무료
        In case a spent nuclear fuel transport cask is lost in the sea due to an accident during maritime transport, it is necessary to evaluate the critical depth by which the pressure resistance of the cask is maintained. A licensed type B package should maintain the integrity of containment boundary under water up to 200 m of depth. However, if the cask is damaged during accidents of severity excessing those of design basis accidents, or it is submerged in a sea deeper than 200 m, detailed analyses should be performed to evaluated the condition of the cask and possible scenarios for the release of radioactive contents contained in the cask. In this work, models to evaluate pressure resistance of an undamaged cask in the deep sea are developed and coded into a computer module. To ensure the reliability of the models and to maintain enough flexibility to account for a variety of input conditions, models in three different fidelities are utilized. A very sophisticated finite element analysis model is constructed to provide accurate response of containment boundary against external pressure. A simplified finite element model which can be easily generated with parameters derived from the dimensions and material properties of the cask. Lastly, mathematical formulas based on the shell theory are utilized to evaluate the stress and strain of cask body, lid and the bolts. The models in mathematical formula will be coded into computer model once they show good agreement with the other two model with much higher fidelity. The evaluation of the cask was largely divided into the lid, body, and bottom, bolts of the cask. It was confirmed that the internal stress of the cask was increased in accordance with the hydrostatic pressure. In particular, the lid and bottom have a circular plate shape and showed a similar deformation pattern with deflection at the center. The maximum stress occurred where the lid was in the center and the bottom was in contact with the body. Because the body was simplified and evaluated as a cylinder, only simple compression without torsion and bending was observed. The maximum stress occurred in the tangential direction from the inner side of the cylinder. The bolt connecting the lid and the body was subjected to both bending and tension at the same time, and the maximum stress was evaluated considering both tension and bending loads. In general, the results calculated by the formulas were evaluated to have higher maximum stresses than the analysis results of the simplified model. The results of the maximum stress evaluation in this study confirms that the mathematical models provide conservative results than the finite element models and can be used in the computer module.
        115.
        2022.10 구독 인증기관·개인회원 무료
        The skeleton of fuel assembly is composed of top nozzle, bottom nozzle, grids, and guide tubes. In the reactor core, all the parts of the fuel assembly suffer degradations due to the condition of high temperature, pressure and water environment. Therefore, many material properties of high temperature mechanical strength, corrosion and irradiation resistance have been considered to choose the material for fuel assembly parts in the fuel development stage. The guide tubes have important roles to connect each parts and support the load of fuel assembly while the fuel is lifted. In Westinghouse 14×14 standard fuel assembly, Zircaloy-4 was used for the material of the guide tubes. Zircaloy-4 has a resistance to water corrosion and maintain good mechanical properties after the discharge from the core, so this alloy is also utilized for a fuel rod cladding material although the microstructure is slightly different due to the heat treatment difference. Thus, it is expected that there is no issue regarding the guide tube integrity after the discharge and during the storage in the pool, especially in case of low burn-up. However, the surface oxidation and resultant hydrogen pick-up can affect to the embrittlement to the Zr alloy. So, it is needed to know the actual status of spent fuel assembly by performing post-irradiation examination. In this study, the degradation level of the guide Tubes in low burn-up spent fuel assembly was investigated using the KAERI PIE facility in order to make some data which can be utilized to the baseline for evaluating the integrity of the spent fuel skeleton.