검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2014.04 구독 인증기관·개인회원 무료
        The Riptortus-Burkholderia symbiosis is a newly emerging insect-bacterium symbiotic system. This symbiosis system has a good merit as an experimental model system to produce the non-symbiotic (apo) and symbiotic (sym) host insect. In recent reported papers, the symbionts play important biological roles for the host insects. Meanwhile, juvenile hormone (JH) is one of major hormone synthesized corpora allata(CA) to control many physiology of insect. However, the study for cross-talk mechanism between symbionts and host hormones to control important physiological phenomenon of insects is almost none. In this study, we found that Riptortus speed up adult emerging and increase egg laying on presence of symbiont Burkholderia. Also we found that hexamerin proteins, which were controlled the expression by JH, were accumulated in sym-Riptortus hemolymph compare with apo-Riptortus. According as combined results, we hypothesized that the gut symbiont Burkholderia can control JH titer to conclude out beneficial effects such as development and reproduction of R. pedestris. To verify this hypothesis, we examined measurement of JH titer, expression of hexamerins as JH response genes and RNAi for hexamerin protein during whole Riptortus life on presence or absence of symbiont Burkholderia. All results demonstrated that gut symbiont controlled JH titer of Riptortus. Controlled JH amount by symbiont Burkholderia in host midgut regulated hexamerin protein expression for speeding up adult emerging and increasing egg production.