검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        It is well known that smoking generates harmful air pollutants. With smoking in buildings as well as in the streets prohibited, the need for smoking rooms has emerged. In this study, particle and CO contamination in a 63.6 m3 smoking room was experimentally investigated using Korean tobacco. Tobacco smoking was artificially simulated using a smoking machine. The number and size distribution of particles ranging from 10-420 nm and 0.25-32 μm were measured using a Nanoscan (TSI model 3910) and a portable aerosol spectrometer (Grimm model 1.109), respectively. CO concentration was also monitored using an IAQ monitor (Graywolf IAQ-Xtra 610). Four tobaccos were simultaneously smoked in each experiment, and the experiment was repeated four times. Maximum CO concentrations of 7-10 ppm were observed and high concentrations of particles (176,000-1,115,000 particles/cm3 for 10-420 nm, 3,700-5,200 particles/cm3 for 0.25-32 μm) were also monitored. The dominant size of tobacco particles was about 100 nm in diameter.
        4,000원
        2.
        2007.04 KCI 등재 서비스 종료(열람 제한)
        The photodegradation and by-products of the gaseous toluene with TiO2 (P25) and short-wavelength UV (UV254+185nm) radiation were studied. The toluene was decomposed and mineralized efficiently owed to the synergistic effect of photochemical oxidation in the gas phase and photocatalytic oxidation on the TiO2 surface. The toluene by the UV254+185nm photoirradiated TiO2 were mainly mineralized CO2 and CO, but some water-soluble organic intermediates were also formed under severe reaction conditions. The ozone and secondary organic aerosol were produced as undesirable by-products. It was found that wet scrubber was useful as post-treatment to remove water-soluble organic intermediates. Excess ozone could be easily removed by means of a MnO2 ozone-decomposition catalyst. It was also observed that the MnO2 catalyst could decompose organic compounds by using oxygen reactive species formed in process of ozone decomposition.
        3.
        2006.05 KCI 등재 서비스 종료(열람 제한)
        Removal of elemental mercury (Hg0) with the reactive species produced from dielectric barrier discharge (DBD) was studied. We investigated the effect of operating parameters such as the applied voltage, residence time, initial concentration and co-existence of other pollutants. The removal of Hg0 was significantly promoted by an increase in the applied voltage of the DBD reactor system. It is important to note that at the same input power, the removal efficiency of Hg0 was much higher than that of NO gas. These results imply that if the DBD system is used as a NOx treatment facility, it is capable of removing Hg0 simultaneously with NOx.