검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2008.10 구독 인증기관·개인회원 무료
        Lycorma delicatula, once mistakenly reported its occurrence in Korea, is now suddenly common in western Korea, due to its recent arrival from China and their subsequent settlement. A history of name changes in two fulgorid species, Lycorma delicatula and Limois emelianovi is reviewed. We propose to use 꽃매미 instead of its temporary name, 주홍날개꽃매미 for Lycorma delicatula, and, based on the ICZN code 32.5.1, to use Limois emelianovi instead of Limois emeljanovi for 희조꽃매미.
        2.
        2014.07 서비스 종료(열람 제한)
        UDP-glucose 4-epimerase (UGE) catalyzes the reversible conversion of UDP-glucose to UDP-galactose. To understand the biological function of UGE from Brassica rapa, the gene hereinafter referred to as was cloned and overexpressed into Japonica rice cv. Gopum. Transcriptional profiling showed that the is specific to stem of rice plant. Morphological evaluation of the overexpression lines revealed altered phenotype characters particularly in panicle length, number of productive tillers and filled spikelets which account for an increase in yield. This remarkable agronomic performance was ascribed to higher photosynthetic rate complemented with higher CO2 assimilation. Interestingly, BrUGE1 did not only improve plant fitness under optimal condition but also under water deficit stress. The enhanced drought tolerance may be due to the induction of soluble sugar which may act as osmolyte to compensate dehydration during drought stress.
        3.
        2013.07 서비스 종료(열람 제한)
        Glutamine synthetase (GS) is an enzyme that plays an essential role in the metabolism of nitrogen by catalyzing the condensation of glutamate and ammonia to form glutamine. Exposure of plants to cadmium (Cd) has been reported to decrease GS activity in maize, pea, bean, and rice. To better understand the function of the GS gene under Cd stress in rice, we constructed a recombinant pART vector carrying the GS gene under the control of the CaMV 35S promoter and OCS terminator and transformed using Agrobacterium tumefaciens. We then investigated GS overexpressing rice lines at the physiological and molecular levels under Cd toxicity. The GS activity along with mRNA expression were found higher in transgenic than in wild type plants. And this is validated by the low malondialdehyde contents observed 10 days after treatment. GS overexpression in rice resulted in the modulation of expression of enzymes responsible for membrane peroxidation, which may result in the sudden death of plants. Our results thus describe the features of a transgenic rice plants with enhanced tolerance to Cd toxicity.