검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2022.05 구독 인증기관·개인회원 무료
        The chelating agent and cellulose generated during the operating and decommissioning of a NPP’s form organic complexing compounds. That is accelerate the migration of radionuclide and have a bad influence of LILW disposal site. In this study, the GoldSim (RT module) program was used for the effects of radionuclide migration by organic complex compounds as described above. A scenario was derived for evaluation, and a conceptual design (Concept Art) of the GoldSim model was performed. 1) Derivation of the scenario. For the scenario, we selected a groundwater flow scenario in which groundwater flows in and radionuclides flow out after a lapse of time after the operation of the LILW disposal site in Gyeongju is closed. The inflowing groundwater comes into contact with radioactive waste and the radionuclides dissolve. The dissolved nuclides move past the drum and out of the disposal vessel due to the advection phenomenon. Radionuclides spilled from the disposal vessel pass through the silo internal filler (crushed stone) and reach the engineering barrier concrete. Radionuclides from degraded concrete are scenarios that move along the flow of groundwater to the near and far. 2) Radionuclide migration concept design. The radionuclide movement section was largely designed with Inner (Inside the silo), Near and Far. (A) Inner (Inside the silo) This section is where radionuclides move from the radiation source to the engineering barrier (silo). The detailed migration path was designed to allow radioactive nuclides to flow out and move to waste drums, solidified matrix of indrum, disposal vessel fillers, disposal vessels, silo fillers (crushed stones), and engineered barriers (concrete). The LILW disposal site in Gyeongju has a total of 6 silos. Each of the 6 silos was modeled and designed in consideration of the structural information and positional impact. (B) Near & Far. In generally design, the near is form source term to engineered barrier and far is beyond the engineered barrier. In this study, the near and far designed by radionuclide in the section from the beyond the engineering barrier (silo) to the sea through the groundwater flow through the natural rock. Especially in the case of near, the design was made by applying the position of the natural rock sampling drill hole.
        2.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Purpose: This study compares the chest compression quality, and the willingness and confidence to perform cardiopulmonary resuscitation (CPR) before and after education between the compression only CPR (COCPR) group and the standard CPR (STCPR) group using manikins. Method: This study employs a randomized controlled trial design. A total of 219 and 214 individuals were randomly assigned to the COCPR and STCPR groups, respectively. Both groups were asked to perform CPR for 2 min before and after education. The willingness and confidence to perform CPR were surveyed through a questionnaire. Results: Before education, the STCPR group had a significantly higher mean chest compression depth and accuracy than the COCPR group for the entire 2 min. After education, the STCPR group had a significantly higher mean chest compression depth for 2 min and higher compression accuracy for late 1 min than the COCPR group. However, no significant difference in the willingness and confidence to perform CPR according to the compression method was evident. Conclusion: Repeated training is required to maintain chest compression quality. CPR education improves willingness and confidence to perform CPR.
        4,500원
        3.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The health benefits associated with consumption of fresh produce have been clearly demonstrated and encouraged by international nutrition and health authorities. However, since fresh produce is usually minimally processed, increased consumption of fresh fruits and vegetables has also led to a simultaneous escalation of foodborne illness cases. According to the report by the World Health Organization (WHO), 1 in 10 people suffer from foodborne diseases and 420,000 die every year globally. In comparison to other processed foods, fresh produce can be easily contaminated by various routes at different points in the supply chain from farm to fork. This review is focused on the identification and characterization of possible sources of foodborne illnesses from chemical, biological, and physical hazards and the applicable methodologies to detect potential contaminants. Agro-chemicals (pesticides, fungicides and herbicides), natural toxins (mycotoxins and plant toxins), and heavy metals (mercury and cadmium) are the main sources of chemical hazards, which can be detected by several methods including chromatography and nano-techniques based on nanostructured materials such as noble metal nanoparticles (NMPs), quantum dots (QDs) and magnetic nanoparticles or nanotube. However, the diversity of chemical structures complicates the establishment of one standard method to differentiate the variety of chemical compounds. In addition, fresh fruits and vegetables contain high nutrient contents and moisture, which promote the growth of unwanted microorganisms including bacterial pathogens (Salmonella, E. coli O157: H7, Shigella, Listeria monocytogenes, and Bacillus cereus) and non-bacterial pathogens (norovirus and parasites). In order to detect specific pathogens in fresh produce, methods based on molecular biology such as PCR and immunology are commonly used. Finally, physical hazards including contamination by glass, metal, and gravel in food can cause serious injuries to customers. In order to decrease physical hazards, vision systems such as X-ray inspection have been adopted to detect physical contaminants in food, while exceptional handling skills by food production employees are required to prevent additional contamination.
        4,300원