검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 14

        1.
        2011.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        KASI and Seoul National University developed the Fast Imaging Solar Spectrograph (FISS) as one of major scientific instruments for the 1.6 m New Solar Telescope (NST) and installed it in the Coude room of the NST at Big Bear Solar Observatory (BBSO) in May, 2010. The major objective of the FISS is to study the fine-scale structures and dynamics of plasma in the photosphere and chromosphere. To achieve it, the FISS is required to take data with a spectral resolution higher than 105 at the spectrograph mode and a temporal resolution less than 10 seconds at the imaging mode. The FISS is a spectrograph using Echelle grating and has characteristics that can observe dual bands (Hα and CaII 8542) simultaneously and perform fast imaging using fast raster scan and two fast CCD cameras. In this paper, we introduce briefly the whole process of FISS development from the requirement analysis to the first observations.
        4,000원
        2.
        2008.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, we introduce the performance evaluation and development of Raw VLBI Data Buffer(RVDB) system for the synchronized playback processing of observed data in Korea-Japan Joint VLBI Correlator(KJJVC). The high-speed correlation processing system is under development so that the radio data obtained with 8192 channels and 8 Gbps speed from 16 stations will be able to be processed. When the recorded data of each station are played to correlator, the time synchronization of each station is very important because the correlator should process the data obtained with same time and condition. There are many types of recorder systems in the East Asia VLBI Network (EAVN). Therefore it is required to prepare the special time synchronized playback processing system to synchronize the time tag of observed data. The developed RVDB system consists of Data Input Output(DIO), 10GbE switch, and Disk Data Buffer(DDB). It can record the data with maximum 2 Gbps speed, and can play back the data to correlator with nominal 2 Gbps speed. To enable to play back the data of different playback system to the correlator, we developed the high-speed time synchronized playback processing system. We carried out the experiments of playing back and correlation for gigabit correlator and VCS trial product so as to confirm the performance of developed time synchronized playback processing system. In case of online and offline playing back experiment for gigabit correlator, we confirmed that the online and offline correlation results were the same. In case of playing back experiment for VCS trial product, we verified that the wide band and narrow band correlation results were also the same. Through the playing back experiments of RVDB system, the effectiveness of developed RVDB system was verified. In this paper, the system design, construction and experimental results are shown briefly.
        5,100원
        3.
        2008.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A software simulator is developed for verifying the VLBI Correlation Subsystem (VCS) trial product hardware. This software simulator includes the delay tracking, fringe rotation, bit-jump, FFT analysis, re-quantization, and auto/cross-correlation functions so as to confirm the function of the VCS trial product hardware. To verify the effectiveness of the developed software simulator, we carried out experiments using the simulation data which is a mixed signal with white noise and tone signal generated by software. We confirmed that the performance of this software simulator is similar as that of the hardware system. In case of spectral analysis and re-quantization experiment, a serious problem of the VCS hardware, which is not enough for expressing the data stream of FFT results specified in VCS hardware specification, was found by this software simulator. Through the experiments, the performance of software simulator was verified to be efficient. In future, we will improve and modify the function of software simulator to be used as a software correlator of Korea-Japan Joint VLBI Correlator (KJJVC).
        5,200원
        6.
        2007.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, we describe the proposed KVN (Korean VLBI Network) clock system in order to make the observation of the VLBI effectively. In general, the GPS system is widely used for the time information in the single dish observation. In the case of VLBI observation, a very high precise frequency standard is needed to perform the observation in accordance with the observation frequency using the radio telescope with over 100km distance. The objective of the high precise clock system is to insert the time-tagging information to the observed data and to synchronize it with the same clock in overall equipments which used in station. The AHM (Active Hydrogen Maser) and clock system are basically used as a frequency standard equipments at VLBI station. This system is also adopted in KVN. The proposed KVN clock system at each station consists of the AHM, GPS time comparator, standard clock system, time distributor, and frequency standard distributor. The basic experiments were performed to check the AHM system specification and to verify the effectiveness of implemented KVN clock system. In this paper, we briefly introduce the KVN clock system configuration and experimental results.
        4,200원
        9.
        2006.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, we describe the radio astronomical data processing system implementation using Mark5B and its development. KASI(Korea Astronomy and Space Science Institute) is constructing the KVN (Korean VLBI Network) until the end of 2007, which is the first VLBI(Very Long Baseline Interferometery) facility in Korea and dedicated for the mm-wave VLBI observation. KVN will adopt the DAS (Data Acquisition System) consisting of digital filter with various function and 1Gsps high-speed sampler to digitize the radio astronomical data for analyzing on the digital filter system. And the analyzed data will be recorded to recorder up to 1Gbps data rates. To test this, we have implemented the system which is able to process 1Gbps data rates and carried out the data recording experiment.
        4,000원
        11.
        2005.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, we propose a small-scale Gigabit VLBI observing system for the Korean VLBI Network (KVN) under construction. The system consists of high-speed sampler, IP-VLBI board, PC-VSI board, and software correlator. Radio signal received by receiver is sampled by high-speed sample. at 1 Gsps (Gigabit sample per second) rate with 2 bits quantization. The digitized signal is recorded in PC and the software correlator does the cross correlation. IP-VLBI board will be used for the geodesy VLBI observation, while PC-VSI board is for the astronomical VLBI observation. The PC-VSI board adopts the VSI-H (VLBI Standard Interface Hardware). The proposed system is based on commercial PCs and therefore can be built inexpensively.
        4,000원
        12.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, we describe a principle of the atomic frequency standard and clock system in VLBI(Very Long Baseline Interferometry). The hydrogen maser is a usual VLBI standard. During VLBI observations, signals emitted by distant sources of radio frequency energy(quasars) are received and recorded at several antennas. At each antenna(VLBI station), a very stable frequency standard(hydrogen maser) provides a reference signal which enables time-tagging to the quasar signals as they are being recorded on magnetic tapes or hard-disk modules. For each VLBl experiment, correlation of the time-tagged recorded information between the participating antennas is used to yield the arrival time differences of any specific quasar radio wave between the antennas. These time differences are used to calculate the relative antennas to each other. In this paper, we also introduce the KVN(Korean VLBI Network) atomic frequency standard and clock system.
        4,000원
        13.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, we introduce the development of the large storage system in order to record the observed space radio signal in the Korean VLBI Network(KVN) with high-speed. The KVN is the Very Long Baseline Interferometery(VLBI) to observe the birth of star, the structure of space by constructing radio telescope with diameter 21m at the Seoul, Ulsan, Jeju from 2001 to 2007 years. To do this, Korea Astronomy Observatory joined the international consortium for developing the high-speed large storage system(Mark 5), which is developed by MIT Haystack observatory. The Mark 5 system based on hard disk has to record up to 1 Gbps the observed space radio signal. The main features of Mark 5 system are as follows; First it is able to directly record the input data to the hard disk without PC1(Peripheral Component Interconnect) internal bus, and the second, it has two hard disk banks, which are able to hot-swap ATA/IDE type very cheap up to 1 Gbps recording and playback. The third is that it follows the international VLBI standard interface hardware(VSI-H). Therefore it can be connect directly the VSI-H type system at the input/output. Finally it also supports e- VLBI(Electronic-VLBI) through the standard Gigabits Ethernet connection.
        4,000원
        14.
        2003.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper is the research and development including the system design and the prototype system building of the 400MHz wide-band digital autocorrelation spectrometer system for radio astronomy observation, which will be used as back-end signal processing unit of the Dual channel SIS receiver at Taeduk Radio Astronomy Observatory. So in this paper, we performed development of the high speed digitizing sampler, the circular memory buffer, and the correlator module for the 400MHz wide-band digital autocorrelator. This developed system will be use at TRAO after the housing and some calibration.
        4,000원