검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 19

        4.
        2012.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Supernovae (SN) and supernova remnants (SNRs) play a major role in the life-cycle of interstellar dusts. Fast shock waves generated by SN explosions sweep out the interstellar space destroying dust grains and modifying their physical and chemical properties. The dense, cooling SN ejecta, on the other hand, provide an environment for dusts to condense. Recent space-infrared telescopes have revealed the hidden universe related to these fascinating microscopic processes. In this paper, I introduce the results on stardusts in young core-collapse supernova remnants obtained by AKARI. The AKARI results show diverse infrared characteristics of stardusts associated with SNRs, implying diverse physical/chemical stellar structures and circumstellar environments at the time of explosion.
        4,000원
        5.
        2008.04 구독 인증기관·개인회원 무료
        8.
        2000.10 구독 인증기관·개인회원 무료
        9.
        1997.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We have developed a spherical FCT code in order to simulate the interaction of supernova remnants with stellar wind bubbles. We assume that the density profile of the supernova ejecta follows the Chevalier mode1(1982) where the outer portion has a power-law density distribution(ρ∝γ−n ρ∝γ−n ) and the SN ejecta has a kinetic energy of 1051 1051 ergs. The structure of wind bubble has been calculated with the stellar mass loss rate ˙ M=5×10−6M⊙/yr M˙=5×10−6M⊙/yr and the wind velocity υ=2×103 υ=2×103 km/s We have simulated seven models with different initial conditions In the first two models we computed the evolution of SNRs with n=7 and n=14 in the uniform medium The numerical results agree with the Chevalier's similarity solution at early times. When all of the power-law portion of the ejecta is swept up by the reverse shock, the evolution slowly converges to the Sedov-Taylor stage. There is not much difference between the two cases with different n's The other five models simulate SNRs produced inside wind bubbles. In model III, we consider the SN ejecta of 1.4 M⊙ M⊙ and the radius of bubble ~2.76 pc so that ratio of the mass α(=MW.S/Mej α(=MW.S/Mej is 2. We follow the complex hydrodynamic flows produced by the interaction of SN shocks with stellar shocks and with the contact discontinuities, In the model III, the time scale for the SN shock to cross the wind shell τcross τcross is similar to the time scale for the reverse shock to sweep the power-law density profile τbend τbend . Hence the SN shock crosses the wind shell. At late times SN shock produces another shell in the ambient medium so that we have a SNR with double shell structure. From the numerical results of the remaining models, we have found that when τcross/τbend≤2 τcross/τbend≤2 , or equivalently when α≤50 α≤50 , the SNRs produced inside wind bubbles have double shell structure. Otherwise, either the SN shock does not cross the wind shell or even if it crosses at one time, the reverse shock reflected at the center accelerates the wind shell to merge into the SN shock Our results confirm the conclusion of Tenorio-Tagle et a1(1990).
        8,000원
        10.
        1997.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We carried out high-resolution(FWHM=3' .3) HI 21 cm observations of the supernova remnant(SNR) PKS0607+17 and HII region S261 using Arecibo 305-m telescope. The observation was to investigate whether the high-velocity(HV) gas detected in the southern area of PKS0607+17 by Koo & Heiles(1991) is physically associated with the SNR or not. The velocity of the HV gas ranges from +64 km/s to +87 km/s, which is difficult to result from the Galactic rotation. The HV gas could be the gas accelerated by supernova blast wave. However, because the observation of Koo and Heiles(1991) was carried out using Hat Creek radio telescope(FWHM ≃ ≃ 36'), the association of the HV gas with the SNR could not be investigated. Using the Arecibo HI 21cm data, we have found that the HV gas appears m the southern part of the SNR and its velocity ranges from +61 km/s to +77 km/s. But the HV gas is scattered m the whole field, not only toward PKS0607+17 but also outside the SNR Accordingly the HV gas is probably not associated with the SNR, but is accidentally aligned along the same line of sight toward the SNR. Instead we have found that HI clouds at low velocities could be possibly associated with the SNR. In Arecibo HI 21cm channel maps the HI gas seems to surround the southern boundary of the SNR at VLSR VLSR = +19.6 ~ +40.2 km/s. But because the region of the Arecibo HI 21cm observation is not wide enough to examine the HI gas distribution, we investigated this area using the Berkely low-latitude HI survey data(Weaver & Williams 1974) too. There we found HI gas surrounding the radio continuum boundary of PKS0607+17 at VLSR VLSR = +21.6 ~ +258 km/s. It is possible that this HI gas is associated with the SNR, in which case, the velocity of the SNR Vo Vo ≃ ≃ +26 km/s, its distance d ≃ ≃ 12.5 kpc and its radius R ≃ ≃ 145 pc. If we assume that the expansion velocity is ~10 km/s, then the age of the SNR is ∼4.4×106 ∼4.4×106 years. PKS0607+17 could be one of the oldest SNRs in the Galaxy. We also studied HI propertities of the HII region S261, which is ∼1∘ ∼1∘ away from PKS0607+17. There has been no high-resolution m 21 cm observational study on S261. We discovered HI cloud located at the north-eastern part of S261 at VLSR VLSR = +5 km/s ~ +10 km/s, which is possibly associated with the HII region. The central velocity of the HI cloud VLSR VLSR = +7.2 km/s and the corresponding distance d = 1.5 kpc. This velocity is comparable to the radio recombination line velocities.
        5,800원
        12.
        1996.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We report the results of H I 21-cm and molecular line studies of the shocked interstellar gas in the W51 complex. We present convincing evidences suggesting that the shocked gas has been produced by the interaction of the W51C supernova remant (SNR) with a large molecular cloud, Our results show that W51C is the second SNR with direct evidences for the shocked cloud material.
        3,000원
        17.
        1984.12 구독 인증기관·개인회원 무료