검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2023.11 구독 인증기관·개인회원 무료
        Small modular reactors (SMRs) are getting attention as an alternative to fossil fuel power stations due to versatile application and carbon dioxide reduction. Although various types of advanced reactors are being developed, water-cooled SMR will be first deployed on a commercial scale. The International Atomic Energy Agency (IAEA) and regulatory bodies are trying to identify safeguards issues of water-cooled SMRs as the first priority. IAEA begins to develop a safeguards plan by asking for the facility’s specification in a given format, a design information questionnaire (DIQ). Then, IAEA periodically performs safeguards activities such as design information verification (DIV) and physical inventory verification (PIV). In this sense, we utilize research and power reactor DIQ for water-cooled SMRs (NuScale, SMART, i-SMR and KLT-40S). Most of the questions are answered with open information. For undisclosed answers, pressurized water reactor (PWR) features are described. Safeguards issues in water-cooled SMR originate from core modularization. As the nuclear material flows are diversified, the number of safeguards measure will be increased while staff are reduced in SMRs. Instrumentation for safeguards should be developed to reduce worker’s fatigue level. Intensive arrangement of fuel assemblies may also need unique devices to secure their visibility or detectability. A transparent floor with a surveillance system or advanced Cherenkov viewing device may be adopted to enhance containment and surveillance. Meanwhile, some questions could be more elaborate regarding safeguards. First, question #38 cannot confirm the time of occurrence of weapon-grade plutonium for reactor operation. Second, the answers in questions #46 and #49 are primitive to identify a place to generate an undeclared fissile material. Therefore, the current DIQ should be revised to get a detailed burnup report and spatial distribution of neutron flux.
        2.
        2023.05 구독 인증기관·개인회원 무료
        In case of Korea, unlike overseas nuclear power plants, adjacent units are located in permanently stopped nuclear power plants. Radioactive substances from airborne and liquid effluents are released into the environment from the NPP, and the radioactivity of the released substances must be reported to the regulatory authorities. Radioactive effluents are released into the environment not only in operation but also after permanent shutdown. Due to domestic conditions in which multiple units exist on the same site, it is necessary to consider radioactive effluents generated after permanent shutdown of NPPs. In particular, liquid effluent may have an increased tritium concentration due to draining the spent fuel pool. This paper summarizes the annual liquid emissions of PWR power plants that have been permanently shut down. The data was obtained from the Nuclear Regulatory Commission’s (NRC) annual radioactive effluent release report, which provides information on the annual emissions power plants into the environment. The liquid emissions of each plant were organized into an annual table, providing an overview of the amount of liquid released by each plant. This study aims to raise awareness about the potential environmental impact of permanently shut down nuclear power plants and the need for proper management of their liquid emissions. The findings of this study can used by operator, policymakers, and other stakeholders to make informed decisions regarding the decommissioning and management of nuclear power plants.