검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2023.11 구독 인증기관·개인회원 무료
        For safe disposal of radioactive wastes, accurate analysis of nuclear isotopes is important. It is known that there are 14 nuclides that have to identify nuclide-specific concentration levels. 63Ni, one of non-volatile nuclear isotopes which is included in those 14 nuclides, has to follow chemical separation for exact analysis. As various analysis methods were developed, various methods for analyzing 63Ni also emerged. Past method has used measurement specimens of 59Ni, after 59Ni measurement has been done. It used HClO4, known as strong oxidizing agent, to dissolve DMG, an organic substance used to form 59Ni precipitates. Nowadays, we analyze 59Ni and 63Ni simultaneously, which enables short analysis time, without use of HClO4. But high accuracy is just as important as short measurement time and efficiency. So, this paper compare 63Ni specific activity value used new method with the value, past method used, using real sample’s data. As a result, all sample data from new method’s relative 63Ni specific activity is within the uncertainty range of past ones based on past specific activity value. Consistency of new method’s result and past method’s data increased the reliability of the data and accuracy of those methods.
        2.
        2022.10 구독 인증기관·개인회원 무료
        The safe, efficient and cost-effective decommissioning and dismantling of radioactive facilities requires the accurate characterization of the radionuclide activities and dose rate environment. And it is critical across many nuclear industries to identify and locate sources of radiation accurately and quickly. One of the more challenging aspects of dealing with radiation is that you cannot see it directly, which can result in potential exposure when working in those environments. Generally, semiconductor detectors have better energy resolution than scintillation detectors, but the maximum achievable count rates are limited by long pulse signals. Whereas some high pure germanium detectors have been developed to operate at high count rates, and these HPGe detectors could obtain gamma-ray spectra at high count rates exceeding 1 Mcps. However, HPGe detectors require cooling devices to reduce the leak currents, which becomes disadvantageous when developing portable radiation detectors. Furthermore, chemicalcompound semiconductor detectors made of cadmium telluride and cadmium zinc telluride are popular, because they have good energy resolution and are available at room temperature. However, CdTe and CZT detectors develop irradiation-induced defects under intense gamma-ray fields. In this Review, we start with the fundamentals of gamma rays detection and review the recent developments in scintillators gamma-ray detectors. The key factors affecting the detector performance are summarized. We also give an outlook on the field, with emphasis on the challenges to be overcome.