Thrombin-induced platelet microbicidal protein (tPMP) is a small cationic peptide that exerts potent in vitro microbicidal activity against a broad spectrum of human pathogens, including Staphylococcus aureus and Streptococcus rattus BHT. Earlier evidence has suggested that tPMP targets and disrupts the bacterial membrane. However, it is not yet clear whether membrane disruption itself is sufficient to kill the bacteria or whether subsequent, presumably intracellular, events are also involved in this process. In this study, we investigated the microbicidal activity of rabbit tPMP toward S. rattus BHT cells in the presence or absence of a pretreatment with antibiotics that differ in their mechanisms of action. The streptocidal effects of tPMP on control cells (no antibiotic pretreatment) were rapid and concentration-dependent. Pretreatment of S. rattus BHT cells with either penicillin or amoxicillin (inhibitors of bacterial cell wall synthesis) significantly enhanced the anti-S. rattus BHT effects of tPMP compared with the effects against the respective control cells over most tPMP concentration ranges tested. On the other hand, pretreatment of S. rattus BHT cells with tetracycline or doxycycline (30S ribosomal subunit inhibitors) significantly decreased the streptocidal effects of tPMP over a wide peptide concentration range. Furthermore, pretreatment with rifampin (an inhibitor of DNA-dependent RNA polymerase) essentially blocked the killing of S. rattus BHT by tPMP at most concentrations compared with the respective control cells. These results suggest that tPMP exerts anti-S. rattus BHT activity through mechanisms involving both the cell membrane and intracellular targets.
The densification behavior of Al-20Si-5.5Fe-1.2Mg-0.5Mn powders was investigated through micro-structure analysis of sintered specimens. The specimens sintered in vacuum or in high purity (99.999%) nitrogen showed porous near-surface microstructures. The densification of near-surface part was enhanced by means of ultra-high purity (99.9999%) nitrogen atmosphere. The relationship between slow densification and oxide surfaces of Al alloy powders was discussed. And the effects of Mg addition, nitrogen gas, and humidity on densification were discussed. In addition, the rapid growth of primary Si crystals above the critical temperature was reported.