검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2022.10 구독 인증기관·개인회원 무료
        Reliable evaluation of radioactivity inventory for the nuclear power plant components and residual materials is very important for decontamination and decommissioning. This can make it possible to define optimum dismantling approaches, to determine radioactive waste management strategies, and to estimate the project costs reasonably. To calculate radioactivity of the nuclear power plant structure, various information such as interest nuclide, cross-section, decay constant, irradiation time, neutron flux, and so on is required. Especially irradiation time and neutron flux level are very changeable due to cycle specific fuel loading pattern, the plant overhaul, cycle length. However most of the radioactivity calculations have generally been performed assuming one representative or average neutron flux during the lifetime of the nuclear power plant. This assumption may include excessive conservatism because the radioactivity level has the characteristics of saturation and decay. Therefore, considering these variables as realistically as possible could prevent overestimation. In order to perform realistic radioactivity calculation, we developed monthly relative power contribution factor applying plant-specific operation history and cycle-specific neutron flux. The factors were applied to the radioactivity calculation. The calculation results ware compared with measured values of the neutron monitors that were actually installed and withdrawn from the nuclear power plant. As a result of the comparisons, there are good agreements between the calculated values and measured values. These accurate calculation results of radioactivity could contribute to the establishment of radioactive waste dismantling strategies, the classification of radioactive waste, and the deposit of disposal costs for safe and reasonable decommissioning of the nuclear power plant.