검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Porous metals demonstrate not only excessively low densities, but also novel physical, thermal, mechanical, electrical, and acoustic properties. Thus, porous metals exhibit exceptional performance, which are useful for diesel particulate filters, heat exchangers, and noise absorbers. In this study, SUS316L foam with 90% porosity and 3,000 μm pore size is successfully manufactured using the electrostatic powder coating (ESPC) process. The mean size of SUS316L powders is approximately 12.33 μm. The pore properties are evaluated using SEM and Archimedes. As the quantity of powder coating increases, pore size decreases from 2,881 to 1,356 μm. Moreover, the strut thickness and apparent density increase from 423.7 to 898.3 μm and from 0.278 to 0.840 g/cm3, respectively. It demonstrates that pore properties of SUS316L powder porous metal are controllable by template type and quantity of powder coating.
        4,000원
        2.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 뿌리부추를 시설하우스에서 재배할 경우 여름철 고온기 하고현상(Summer depression)을 방지하기 위하여 차광막을 하우스 내부 또는 외부에 설치하여 차광정도를 달리하면서 생육 및 수량에 미치는 영향을 조사하기 위하여 수행되었다. 2015년 하우스 내부에 무차광, 35, 55, 75, 95% 차광막을 설치하여 정식 후 20일 째 되는 날에 최종 출현 정도를 조사한 결과, 무처리, 35 및 75% 차광에서 98% 출현하였고, 55 및 95% 차광에서 100% 출현하였다. 차광 정도와는 상관없이 모든 처리에서 최종 출현은 양호하였다. 하우스 내외부에 차광막을 설치했을 경우, 2년간 평균 생중량(Fresh weight) 은 75% 차광에서 6,323kg/10a으로, 무차광, 35%, 55%, 95% 차광보다 각각 5.0배, 1.8배, 1.1배, 1.7배 높았다. 하우스 외부에 차광막을 설치할 경우 생중량은 75% 차 광에서 684g으로, 55%, 95% 차광보다 1.1배, 1.8배 높았다. 건중량(Dry weight), 건물율(Percentage of dry matter), 엽수(No. of leaves), 분얼수(No. of branches), 초장(Plant height), 근장(Root length) 등 분석결과 75% 차광이 다른 차광 보다 통계적으로 유의하게 높거나 절대적 수치가 높게 측정되어 중부지역에서 뿌리부추를 재배 할 경우에는 75% 차광이 가장 적합한 것으로 판단 되었다.
        4,000원
        4.
        2018.06 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Continuous outbreaks of Shigella spp. have raised concerns about the lack of rapid and on-site applicable biosensor method for Shigella detection. Since a bacteriophage has recently been employed as an emerging bio-recognition element in biosensor method, Shigella sonnei-specific bacteriophage was isolated and purified from a slaughterhouse with the final concentration of 2.0×1012 PFU/mL in this study. Analysis of purified S. sonnei-specific bacteriophage using transmission electron microscopy indicated that it possessed an icosahedral head with a relatively long non-contractile tail. It was therefore classified as a member of the Siphoviridae family. Head width, head length, and tail length were 69.9±11.2 nm, 77.5±8.8 nm, and 264.4±33.9 nm, respectively. The genomic DNA size of the S. sonnei-specific bacteriophage was determined to be approximately 25 kb by using 0.4% agarose gel electrophoresis. In specificity test with 43 food-associated microorganisms, the S. sonnei-specific bacteriophage exhibited a clear plaque against S. sonnei only. In addition, the S. sonnei-specific bacteriophage was stable within a wide range of pH values (pH 3-11) and temperatures (4-37 ). Thus, the present study demonstrated the excellent specificity and stability of the S. sonnei-specific bacteriophage as a novel bio-recognition element for S. sonnei detection in foods.
        5.
        2013.10 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        This study was conducted to investigate the antibacterial activity of lactic acid bacteria isolated from traditional fermented foods and to develop a new starter for fermented milk. The isolates were identified using 16S rDNA sequencing and named Lactobacillus plantarum A, Leuconostoc lactis B and L. acidophilus C. The activity of these strains to inhibit the growth of food-borne human pathogens (Escherichia coli NCTC 12923, Salmonella Typhimurium NCTC 12023, Listeria monocytogenes NCTC 11994) was measured using the paper disc method. All these strains showed strong antibacterial activity against Li. monocytogenes NCTC 11994. The experiment groups were the fermented milks with these strains, and the control group was the fermented milk with the commercial starter (ABT 5). The change of pH, acidity and viable cell counts were measured during their aging time. All the experiment groups showed a significant difference in their aging times compared to the control group. However, the sensory test showed that the experiment groups can be used as useful starters for fermented milk. This result suggests that L. plantarum A, Leu. lactis B and L. acidophilus C have the potential to be developed as new starters for fermented milk.