검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 29

        21.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effects of seed soaking treatment with the solutions of plant growth regulators IAA, GA3 and BAP on seed germination and shoot and bulb growth of Allium victorialis var. platyphyllum (Korean wild garlic) were determined. A significant variation in the seed germination rate was recorded at all treatments for various soaking periods. Maximum seed germination was obtained when seeds were soaked in IAA or GA3 solution at 200 mg L-1. The MAP treated seeds started to germinate after 3 months. Among treatments, IAA was found to be most effective in improving seed germination, but further seedling growth was not correlated to the soaking time. Seed soaking in IAA or GA3 solution enhanced further growth of seedlings compared with water control treatment. Shoot and bulb growth was highest in GA3 treatments.
        4,300원
        22.
        2018.12 KCI 등재 서비스 종료(열람 제한)
        Background: Sancho (Zanthoxylum schinifolium Siebold and Zucc) oil is used as a traditional medicinal material to treat severs stomach inflammation and as a diuretic. This study was carried out to investigate the effect of addition of antioxidants and blended oil the storage stability and safety of the biomaterial. Methods and Results: The effects of temperature and light on sancho oil were investigated, and the ability of antioxidants in preventing rancidity of the oil was discovered. Under fluorescent light and in darkness, the acidity of the oil was much lower than that under direct sunlight. The addition of antioxidants decreased the acid value of sancho oil; the antioxidant that showed the best results in this regard was 0.5% propolis. The acid value of canola oil, which had the lowest acid value compared with that of other oils, and blended oil, containing 5% canola oil in sancho oil, decreased by 5.5% and 15%, respectively. About one acid value decrease was observed for every 1% increase in blending with canola oil. As the concentration of canola oil increased, the viscosity and the elightness (L valu) of sancho oil increased slightly, while the blueness (b value) decreased. Conclusions: The results of this study may contribute to ensuring food safety during preservation and the industrialization of the presevation of sancho oil.
        23.
        2017.10 KCI 등재 서비스 종료(열람 제한)
        Background: Sancho oil extracted from Zanthoxylum schinifolium (Siebold & Zucc) is a useful edible oil that has been in use for a long time, but it is known to be susceptible to rancidity. Sancho oil purification can remove impurities to prevent rancidity. This study was performed in order to improve the quality of sancho oil and enhance its availability throughout the purification process. Methods and Results: Sancho oil extracted in Hadong, Korea was refined via the degumming and deoxygenation processes, following which we examined the changes in the polyphenol content, fatty acid content and antioxidant activity of the oil. Acetic acid was effective for deoxygenation of sancho oil and 2 N NaOH was effective for its deoxidation. The polyphenol content and antioxidant activity were reduced by the purification process. Saturated fatty acids contents did not vary with the degumming and deoxygenation processes, however the content of unsaturated fatty acids were slightly reduced. Conclusions: This study suggests that the process of sancho oil purification used in this study will contribute to the increased use and storage of sancho oil.
        1 2