검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        2.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to determine the optimal mixing ratio of olive oil, parmesan cheese, and nuts for preparation of pesto with spinach. Based on a surface response methodology (RSM), the independent variables were olive oil (100~300 g), parmesan cheese (25~75 g) and nuts (12~36 g). The dependent variables were physico-chemical properties as pH, color values (L, a, and b values), viscosity and sensory evaluation. pH decreased with increasing parmesan cheese levels. The L value decreased and the a and b values increased with increasing olive oil levels. Viscosity was negatively correlated with olive oil levels but positively correlated with the amounts of parmesan cheese and nuts. The addition of oil exerted a positive effect on gloss, and oily taste. In the sensory evaluation, the values of appearance, color, flavor, taste and overall acceptance were in the range of 4.4~7.2, 3.7~7.4, 4.4~7.1, 3.9~7.3 and 3.5~7.6, respectively. The sensory evaluation results showed significant values in appearance (p<0.01), flavor (p<0.01), taste (p<0.01) and overall acceptance (p<0.05). The optimal amounts of spinach pesto with olive oil, parmesan cheese, and nuts were determined by numerical optimization of a canonical model and graphical optimization. The optimal amounts were 175.29 g of olive oil, 49.51 g parmesan cheese, and 27.37 g of nuts per 100 g of spinach.
        4,300원
        4.
        2001.03 KCI 등재 서비스 종료(열람 제한)
        Barley Yellow Dwarf Virus (BYDV), an aphid-borne luteovirus, is a major plant pathogenic disease causing a huge economic loss in the grain production of a wide range of Gramineae species throughout the world. It has been recently reported that BYDV also occurred frequently in wheat field of Korea. Here, we performed to develop the detection and classification methods of BYDV strains that were accomplished by reverse transcription-polymerase chain reaction (RT-PCR). Since there are high variations among BYDV strains, three pairs of primers were designed to detect BYDV strains such as PAV (Vic-PAV and CN-PAV) and MAV (primer A) simultaneously, specifically Vic-PAV(primer B), and MAV (primer C) based on the genomic RNA sequences of BYDV strains previously published. The validity of the primers was confirmed using several BYDV strains obtained from CIMMYT. Though three BYDV strains were able to be detected using primer A, PCR products were not distinguished between two PAV strains. It was possible to separate them with a restriction enzyme, EcoRI, whose restriction site was present in the amplified DNA fragment from Vic-PAV, but not from CN-PAV.
        5.
        2001.03 KCI 등재 서비스 종료(열람 제한)
        Soybean mosaic virus (SMV) resistance of Korean recommended soybeans was evaluated naturally and by mechanical inoculation in Suwon. Based on the differential reaction of forty-four soybean genotypes tested to nine different SMV strains, soybeans were classified into twenty-four groups. Myeongjunamulkong and Ilpumgeom-jeongkong showed a high degree of resistance to nine SMV strains, having no symptom. The other cultivars produced various reactions according to inoculation of each SMV strain: symptomless, mosaic or systemic necrosis. Only five cultivars such as Kwangankong, Eunhakong, Tawonkong, Namhaekong, Sobaegnamulkong were totally susceptible to every strain. There was variation in disease incidence. Soybeans, having the highest levels of resistance to G5H and G7H in the greenhouse, showed the lowest levels of SMV incidence in the field of Suwon. Myeong-junamulkong, Ilpumgeomjeongkong, Soyangkong, Pungsannamulkong, Sodamkong, Jangmikong, Geomjeong-kong2, Pureunkong, Sinpaldalkong2, Duyoukong, and Geumgangkong were fairly resistant to SMV. And SMV incidence of Taekwangkong, Saealkong and Baegunkong was over 45% with symptom of bud necrosis. And soybeans, highly resistant to SMV in the field and the greenhouse, were mainly derived from Jangyeobkong and Hwang-keumkong resistant to G1-G7.
        6.
        1999.09 KCI 등재 서비스 종료(열람 제한)
        Reverse transcription and polymerase chain reaction (RT-PCR) assay was used to detect SMV strains. A pair of oligonucleotide primers were designed to include the cylindrical inclusion (CI) coding region between 4,176 to 5,560 nt. Amplification from the total RNA extracted from infected plants with SMV yielded a 1,385 bp DNA fragment. RT-PCR was shown to be 103 times more sensitive than the ELISA assay and it could detect a virus in 10-6 dilution. Restriction enzyme analysis of RT- PCR products using EcoR I showed that SMV isolates were classified into six groups according to the patterns of restriction fragments.