검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 15

        5.
        2005.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanopowders of titanium dioxide incorporating the transition metal element(s) were synthesized by flame synthesis method. Single element among Fe(III), Cr(III), and Zn(II) was doped into the interior of crystal; bimetal doping of Fe and Zn was also made. The characteristics of transition-metal-doped nanopowders in the particle feature, crystallography and electronic structures were determined with various analytical tools. The chemical bond of Fe-O-Zn was confirmed to exist in the bimetal-doped nanopowders incorporating Fe-Zn. The transition element incorporated in the was attributed to affect both Ti 3d orbital and O 2p orbital by NEXAFS measurement. The bimetal-doped nanopowder showed light absorption over more wide wavelength range than the single-doped nanopowders
        4,000원
        6.
        2005.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        ZnO nanostructures with various shapes were synthesized under ambient pressure condition by a wet chemical reaction method. Nanorods of ZnO with hexagonal cross-section and their aggregates with radiate shape were synthesized. Precursor concentration affected considerably the shape evolution of ZnO nanorods. Low precursor concentration was proved to be more preferable to the growth of ZnO nanorods, which is attributed to the intrinsic characteristics of chemical reaction in the synthesis of ZnO from zinc compounds.
        4,000원
        9.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        나노분말 기술은 나노기술이 성숙단계에 접어들 것으로 예상되는 2012년 내지 2015년경에 성숙될 기술이 아니라 이미 산업화가 빠른 속도로 이루어지고 있으며 나노기술의 산업화를 선도할 기술이다. 나노분말 기술은 에너지/환경은 물론 IT, BT 산업 등 거의 모든 신산업 분야에 활용되고 있거나 활용될 전망이다. 이러한 이유로 거의 모든 국가들이 수행하고 있는 나노기술개발 프로그램에 나노소재 기술이 중요한 분야로 다루어지고 있고 나노분말 소재기술 분야는 빠
        4,000원
        14.
        2004.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We report a carbothermal reduction process for massive synthesis of monolithic WO phase from tungsten oxide in the presence of carbon source. Carbon black powder was used as a carbon source and added to WO by 40 weight percent. Bundles of WO rods were formed over the temperature range of 80 to 90. Pure WO bundles could be separated from the mixture of WO and residual carbon black powder. Field emission character of WO phase was determined using the extracted WO rods. Flat lamp fabricated from the WO rods showed the turn-on field of 9.3 V/
        4,000원