검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 312

        1.
        2024.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Slipchip offers advantages such as high-throughout, low cost, and simple operation, and therefore, it is one of the technologies with the greatest potential for high-throughput, single-cell, and single-molecule analyses. Slipchip devices have achieved remarkable advances over the past decades, with its simplified molecular diagnostics gaining particular attention, especially during the COVID-19 pandemic and in various infectious diseases scenarios. Medical testing based on nucleic acid amplification in the Slipchip has become a promising alternative simple and rapid diagnostic tool in field situations. Herein, we present a comprehensive review of Slipchip device advances in molecular diagnostics, highlighting its use in digital recombinase polymerase amplification (RPA), loop-mediated isothermal amplification (LAMP), and polymerase chain reaction (PCR). Slipchip technology allows users to conduct reliable droplet transfers with high-throughput potential for single-cell and molecule analyses. This review explores the device’s versatility in miniaturized and rapid molecular diagnostics. A complete Slipchip device can be operated without special equipment or skilled handling, and provides high-throughput results in minimum settings. This review focuses on recent developments and Slipchip device challenges that need to be addressed for further advancements in microfluidics technology.
        4,000원
        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A glassy carbon electrode modified with a composite consisting of electrodeposited chitosan and carboxylated multi-walled carbon nanotubes (e-CS/MWCNTs/GCE) was used as a working electrode for simultaneous determination of dopamine (DA), serotonin (5-HT) and melatonin (MT), which were related to circadian rhythms. The electrochemical characterizations of the working electrode were carried out via electrochemical impedance spectroscopy and chronocoulometry. It was found that electrochemical modification method, that was cyclic voltammetry, may can cause continuous CS polymerization on MWCNTs surface to form a dense membrane with more active sites on the electrode, and the electrochemically active surface area of e-CS/MWCNTs/GCE obtained was about 7 times that of GCE. The electrochemical behaviour of DA, 5-HT and MT on working electrode were carried out via differential pulse voltammetry and cyclic voltammetry. The results showed that e-CS/MWCNTs/GCE solved the problem that the bare electrode could not detect three substances simultaneously, and can catalyze oxidation potential difference as low as 0.17 V of two substances reaction at the same time, indicating very good electrocatalytic activity. By optimizing the detection conditions, the sensor showed a good linear response to DA, 5-HT and MT in the range of 20-1000 μmol/L, 9-1000 μmol/L and 20-1000 μmol/L, and the detection limits were 12 μmol/L, 10 μmol/L and 22 μmol/L (S/N = 3), respectively. In addition, the proposed sensor was successfully applied to the simultaneous detection of DA, 5-HT and MT in human saliva samples.
        4,200원
        3.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Seawater evaporation and purification powered by solar energy are considered as a promising approach to alleviate the global freshwater crisis, and the development of photothermal materials with high efficiency is imminent. In this study, cellulose nanofiber (CNF)/MXene/Ni chain (CMN) aerogels were successfully synthesized by electrostatic force and hydrogen bond interaction force. CMN10 achieved a favorable evaporation rate as high as 1.85 kg m− 2 h− 1 in pure water, and the corresponding evaporation efficiency could be up to 96.04%. Even if it is applied to seawater with multiple interference factors, its evaporation rate can still be 1.81 kg m− 2 h− 1. The superior seawater evaporation activity origins from the promoted separation of photoexcited charges and photothermal conversion by the synergy of Ni chain and MXene, as well as the water transport channel supported by the 3D structure frame of CNF. Most importantly, CMN aerogel can maintain water vapor evaporation rates above 1.73 kg m− 2 h− 1 under extreme conditions such as acidic (pH 2) and alkaline (pH 12) conditions. In addition, various major ions, heavy metals and organic pollutants in seawater can be rejected by CMN10 during desalination, and the rejection rates can reach more than 99.69%, ensuring the purity of water resources after treatment. This work shows the great potential of CMN aerogel as a high-efficiency solar evaporator and low-cost photothermal conversion material. Cellulose nanofiber (CNF)/MXene/Ni chain (CMN) aerogels demonstrated high evaporation of water from sea water.
        4,300원
        4.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An environmentally friendly and low-cost chitosan-containing polysaccharide (CP) composite ZIF-8/CP was designed and prepared based on the difficulty of separating the traditional adsorbent from the water phase. ZIF-8/CP was synthesized through in-situ growth approach. The physical, chemical and structure properties of ZIF-8/CP were determined through a series of characterization methods, including SEM, FT-IR and PXRD. The effects of touch time, pH, temperature, and coexisting ions on adsorption were assessed. In addition, kinetics, isotherms of adsorption and thermodynamics were examined. The data of isotherms for adsorption indicated that the adsorption of ZIF-8/CP on MG was similar to the Langmuir model, with a maximum adsorption capacity of 1428.57 mg/g. Moreover, the kinetic parameters were consistent with the pseudo- 2nd-order equation. Thermodynamic studies (ΔG < 0, ΔH > 0) demonstrated a heat-absorbing and spontaneous adsorption process. Our study reveals that ZIF-8/CP has good adsorption properties and environmental properties.
        4,200원
        5.
        2023.12 구독 인증기관 무료, 개인회원 유료
        This article delves into the development of Japanese Chinese character variations, and how they fit into the broader study of Chinese characters. By examining the differences between early Japanese kanji and modern Japanese writing systems, as well as the varying approaches of Chinese and Japanese scholars in studying Japanese kanji, we can propose a more fitting classification and naming method better suited to studying Chinese characters. To that end, we take the Wamyō Ruiju Shō (倭名類聚抄) as an example, exhaustively sorting out the situation of variant characters in the manuscript across different eras, and referring to other ancient Chinese dictionaries from the same period. This article introduces concepts like “inherited variants” and “Japan saved variants” to make studying these characters more comprehensive.
        5,400원
        6.
        2023.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Single-atom Pd clusters anchored on t-BaTiO3 material was synthesized using hydrothermal and ultrasonic methods for the effective piezoelectric catalytic degradation of pollutants using vibration energy. XRD patterns of BaTiO3 loaded with monoatomic Pd were obtained before and after calcining, and showed typical cubic-phase BTO. TEM and HAADF-STEM images indicated single-atom Pd clusters were successfully introduced into the BaTiO3. The piezoelectric current density of the prepared Pd-BaTiO3 binary composite was significantly higher than that of the pristine BaTiO3. Under mechanical vibration, the nanomaterial exhibited a tetracycline decomposition rate of ~95 % within 7 h, which is much higher than the degradation rate of 56.7 % observed with pure BaTiO3. Many of the piezo-induced electrons escaped to the Pd-doped BaTiO3 interface because of Pd’s excellent conductivity. Single-atom Pd clusters help promote the separation of the piezo-induced electrons, thereby achieving synergistic catalysis. This work demonstrates the feasibility of combining ultrasonic technology with the piezoelectric effect and provides a promising strategy for the development of ultrasonic and piezoelectric materials.
        4,200원
        7.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A novel kind of self-assembled graphene quantum dots-Co3O4 (GQDs-Co3O4) nanocomposite was successfully manufactured through a hydrothermal approach and used as an extremely effectual oxygen evolution reaction (OER) electrocatalyst. The characterization of morphology with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that Co3O4 nanosheets combined with graphene quantum dots (GQDs) had a new type of hexagonal lamellar selfassembly structure. The GQDs-Co3O4 electrocatalyst showed enhanced electrochemical catalytic properties in an alkaline solution. The start potential of the OER was 0.543 V (vs SCE) in 1 M KOH solution, and 0.577 V (vs SCE) in 0.1 M KOH solution correspondingly. The current density of 10 mA cm− 2 had been attained at the overpotential of 321 mV in 1 M KOH solution and 450 mV in 0.1 M KOH solution. Furthermore, the current density can reach 171 mA cm− 2 in 1 M KOH solution and 21.4 mA cm− 2 in 0.1 M KOH solution at 0.8 V. Moreover, the GQDs-Co3O4 nanocomposite also maintained an ideal constancy in an alkaline solution with only a small deterioration of the activity (7%) compared with the original value after repeating potential cycling for 1000 cycles.
        4,000원
        8.
        2023.10 구독 인증기관·개인회원 무료
        Natural enemy insects, including predators and parasitoids, are beneficial organisms that feed upon other agricultural pests. Using natural enemy insects to suppress or prevent outbreak of pests is a key component of integrated pest management strategy. It is safe, effective, and environmentally friendly and can be applied easily to the greenhouses, filed crops and orchards. Rearing and application of natural enemy insects in biocontrol in China have a long history. As early as 1700 years ago, the predator Oecophylla smaragdina has been used for controlling many kinds of citrus pests. Up to now, more than 30 species of natural enemies that can be artificially mass produced and widely used for biological control of many kinds of pests, including caterpillars, aphids, whiteflies, thrips, leaf mites and scales in China. The annual average application area of natural enemies is over 11.34 million hectares. However, with the increasing demand of using natural enemies in biological control programs, the development of natural enemy insect industrialization still face many challenges. It is urgent to explore more effective candidate natural enemies, improve the production efficiency, increase the shelf life of products and enhance the colonization of natural enemy insects after release, and thus facilitate the commercially production and application of natural enemies. This is of great significance for comprehensively promoting the use of green prevention and control techniques for crop diseases and pests, reducing the use of chemical pesticides, ensuing the quality and safety of food and agricultural products, and ultimately promoting sustainable agricultural development.
        10.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The emergence of Mo2C- based catalysts in recent years has been favored as promising contender within diverse class MXenes. In terms of rapid development in the photocatalytic application, these intriguing compounds exhibit excellent photocatalytic performance because of their superior optical properties and peculiar structure characteristics. Unfortunately, a systematic review of Mo2C- based catalysts is lacking. In this review, we abstract the implication of structure—property relationship of emerging Mo2C- based MXenes materials and their applications toward the photocatalytic hydrogen evolution reaction (HER). Furthermore, synthetic pathways to prepare high-quality, low cost Mo2C- based MXenes materials and their outcomes for high HER applications are systematically described. Finally, several insights are provided into the prospects and future challenges for the development of highly reactive Mo2C- based MXenes materials, which present large range opportunities in this promising 2D materials for green and clean energy in environmental fields. This review provides a comprehensive scientific guide to the preparation, modification, and photocatalytic HER of MXenes-based materials.
        4,600원
        11.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Phytohormones (plant hormones) are a class of small-molecule organic compounds synthesized de novo in plants. Although phytohormones are present in trace amounts, they play a key role in regulating plant growth and development, and in response to external stresses. Therefore, the analysis and monitoring of phytohormones have become an important research topic in precision agriculture. Among the various detection methods, electrochemical analysis is favored because of its simplicity, rapidity, high sensitivity, and in-situ monitoring. Graphene and graphene-like carbon materials have abundant sources, exhibiting large specific surface area, and excellent physicochemical properties. Thus, they have been widely used in the preparation of electrochemical biosensors for phytohormone detection. In this paper, the research advances of electrochemical sensors based on graphene and graphene-like carbon materials for phytohormone detection have been reviewed. The properties of graphene and graphene-like carbon materials are first introduced. Then, the research advances of electrochemical biosensors (including conventional electrochemical sensors, photoelectrochemical sensors, and electrochemiluminescence sensors) based on graphene and graphene-like carbon materials for phytohormone detection is summarized, with emphasis on their sensing strategies and the roles of graphene and graphene-like carbon materials in them. Finally, the development of electrochemical sensors based on graphene and graphene-like carbon materials for phytohormone detection is prospected.
        4,900원
        12.
        2023.07 구독 인증기관·개인회원 무료
        Digital technology has been increasingly applied in the traditional tourism forms, including the heritage tourism. However, the role of technology and tradition for attracting tourists in industrial heritage tourism destinations has not been clearly identified. To narrow the research gaps, this study adopted a two stage study, based on grounded theory and factor analyses. In Study 1, through the data analysis of 60 in-depth interviews, 10 stimuli factors in 3 categories were identified. In Study 2, a questionnaire was developed based on the results of Study 1, through exploratory factor analysis (EFA) and confirmatory factor analysis (CFA), we established and tested a model of on-site stimulus factors. Findings can deepen the understanding of industrial heritage tourism from a tourist perspective and offer practical implications.
        13.
        2023.07 구독 인증기관·개인회원 무료
        The costs associated with law enforcement have seen a sharp increase, driven by rising personnel costs and the growing demand for policing services (Gascón, 2010; Urban Institute, 2020). Considerable discussion has arisen about how science can potentially help law enforcement “do more with less”, and some scholars have suggested introducing new crime control technologies to address this problem (e.g., Roach, 2022; Weisburd & Neyroud, 2011). With the onset of the COVID-19 pandemic, police departments around the world had additional demand, as they were made responsible for overseeing and ensuring compliance with COVID protocols. As a response, some countries (e.g., Singapore and China; Barrett, 2021) resorted to employing service robots either alongside or in place of police officers to assist with COVID-related compliance tasks.
        14.
        2023.07 구독 인증기관·개인회원 무료
        In recent years E-commerce platforms recommend some products for consumers based on their shopping history and user persona. However, sometimes, unfamiliar products or styles would be recommended to consumers unintentionally or intentionally. Curiosity drives consumers to try but this idea would be declined with the consideration of product fit uncertainty. Augmented Reality (AR) is the integration of digital information with the user‘s environment in real-time (Hilken et al. 2018), it can deal with issues related to physical apprehension that hinder consumers’ online shopping (i.e, clothes, cosmetics), especially for the unfamiliar style. This study aims to investigate whether AR technology could improve consumers' purchase likelihood. Augmented Reality (AR) can enhance customer experiences in a multichannel environment (Hilken et al. 2017). AR Integrates online experiences into the offline experience (Hilken et al. 2018), such as virtual try-on or magic mirrors. Customers often find it difficult to imagine how firms’ products and services fit them personally or fit with their environment (Hilken et al. 2018). Drawn on AR, consumers can easily evaluate the fitness between themselves and the selected products. Prior studies have explored the different underlying processes of why AR technology could improve consumer purchase intention and customer experience. For instance, according to the situated cognition theory, AR creates a feeling of spatial presence (Hilken et al. 2017). The usage of AR benefits mental imagery, improving decision comfort (Heller et al. 2019). AR can compensate for consumers’ need for touch and offer hedonic and/or utilitarian benefits (Gatter et al. 2022). Based on media richness theory, AR offers more information for customers (Hoffmann et al. 2022), which represents a fitting concept for customers to evaluate the product (Javornik 2016).
        15.
        2023.07 구독 인증기관·개인회원 무료
        Following a series of major breakthroughs in artificial intelligence (AI) technology, it is believed that the use of AI technology can fundamentally subvert many industries and business fields, one of which is marketing. For instance, AI is likely to become a key driver of how advertising and marketing activities are conducted (Qin and Jiang, 2019) and thus dramatically change marketing strategies and customer behaviors (Davenport et al., 2020).
        16.
        2023.07 구독 인증기관 무료, 개인회원 유료
        Some digital platforms introduced a novel positive-framing design in the multi-dimensional rating system, which framed the attribute with positive words for consumers to rate. The results from a cross-platform quasi-natural experiment show that the positive-framing design can increase the rating scores compared with the traditional non-positive framing design.
        4,000원
        17.
        2023.07 구독 인증기관·개인회원 무료
        Crowdfunding is an increasingly popular fundraising tool where project creators solicit capital from potential backers in return for monetary rewards or presales of products/services. Potential backers in crowdfunding are looking for potential cues to reduce uncertainty and predict new venture success when making their capital contributions. To increase their funding success, project creators strategically use project descriptions as a marketing tool to attract potential backers and funding.
        18.
        2023.07 구독 인증기관 무료, 개인회원 유료
        Metaverse blends the physical and virtual worlds, transforming the customer's shopping experience. This study aims to identify the psychological mechanism in the metaverse environment and the relationship between metaverse experience and consumer happiness. To identify metaverse experiences, both behavioral and functional magnetic resonance imaging (fMRI) studies were conducted. In a behavioral study, we found that consumers' happiness increased when participants were in an immersive metaverse space. In the fMRI study, we found greater activation in the medial prefrontal cortex (MPFC) and lateral occipital cortex (LOC) regions in the high level of the immersive metaverse and found a positive relationship with consumers' happiness. This paper is the first attempt in marketing to provide an integrative brain map for the metaverse experience. This brain map helps marketers better understand the consumer experience. This study suggests that only in the immersive metaverse space where virtual and physical experiences interact can consumers become one with the virtual space and maximize customer experience values.
        3,000원
        19.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, waste corrugated paper was used as carbon precursor with KOH-NaOH mixture (mole ratio was 51:49 and the melting point is 170 °C) as activator to prepare porous carbon at different reaction temperature and different mass ratio of KOH-NaOH mixture/waste corrugate paper fiber. The micro-morphology, pore structure information and composition of porous carbon were analyzed, and the formation mechanism of pores was investigated. The effect of activator amount and pyrolysis temperature on the morphology and structure of porous carbon were studied. The adsorption capacity of porous carbon was evaluated with the methylene blue as model pollutant. The effect of adsorbent amount, adsorption time and temperature on the adsorption performance of the porous carbon were analyzed. The maximum specific surface area is 1493.30 m2 ·g−1 and the maximum adsorption capacity of methylene blue is 518 mg·g−1. This study provides a new idea for efficient conversion and utilization of waste paper.
        4,200원
        20.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        How to effectively deal with the polluted water by the pollutant of organic dyes is the world problem. It is of great significance if the organic dyes in the polluted water can be directly turned into the useful materials through a facile approach. Herein, the water which contains the common organic dye, Reactive red 2 (RR2), has been chosen to be the model to synthesize graphene quantum dots (GQDs) by a facile route. The comprehensive characterizations, including TEM (HRTEM), XPS, Raman, PL and UV–Vis. spectra, have been performed to confirm the structures and explore the properties of the synthesized GQDs. Meanwhile, the excellent PL properties and low biotoxicity of the GQDs confer them with the potential applications in the biological fields. When the GQDs are excited by the wavelength of 360 nm, the maximum emission is achieved at 428 nm. It is well demonstrated that the synthesized GQDs are able to detect the Al3+ which causes multiple diseases, such as Parkinson, Alzheimer, kidney disease, and even cancer. The detection range is from 90 to 800 μM, which is different from the reported kinds of the literature. Therefore, this work not only provides an economical and environmental route on solving the universal problem from organic dyes, but also facilitates to advancing the synthesis and application of GQDs.
        4,000원
        1 2 3 4 5