Bio-efficacies of two different types of fungicides, Diniconazole and Paclobutrazol with their effects as plant g rowth regulators f or Kimchi Cab bage were e valuated o n February 4 to A pril 13, 2024 in Los Baños, Laguna, Philippines. The experiment was done during the off-season planting of Kimchi Cabbage in the country. Yield and other horticultural characteristics were observed for seven different groups: group 1, untreated control; group 2, recommended rate of granular fertilizer (RR-G); group 3, recommended rate of granular fertilizer plus recommended rate of Diniconazole; group 4, recommended r ate of D iniconazole (alone); g roup 5 , recommended rate o f Paclob utrazol (RR-PBZ), group 6, RR-G plus RR-PBZ; and group 7, RR-G plus ½ RR-PBZ. Results showed that combination of recommended rate of granular fertilizer plus the full recommendation of Paclobutrazol (group 6) resulted in a significantly higher yield of 64.9 tons/ha than other groups with yields ranging from 23.3 to 55.3 tons/ha. Such significantly higher yield in group 6 was also attributed to the number of leaves produced by plants at the time of harvest. Regarding effects of two chemical treatments, the combination of Diniconazole a nd P aclob utrazol a s recommended granular f ertilizers h elped in t he heading of K imchi Cabbage during hot conditions with an average temperature of 32-35°C from March to April at the heading stage plus a f actor of b eing planted a t a lowland area i n the country. T he a dvantage o f Paclobutrazol aside from yield is its availability in the country as compared to Diniconazole (Binnari).
In this study, laser-induced graphene oxide (LIGO) was synthesized through a facile liquid-based process involving the introduction of deionized (DI) water onto polyimide (PI) film and subsequent direct laser irradiation using a CO2 laser (λ = 10.6 μm). The synthesized LIGO was then evaluated as a sensing material for monitoring changes in humidity levels. The synthesis conditions were optimized by precisely controlling the laser scribing speed, leading to the synthesis of LIGO with different structural characteristics and varying oxygen contents. The increased number of oxygen-containing functional groups contributed to the hydrophilic properties of LIGO, resulting in a superior humidity sensing capabilities compared with laser-induced graphene (LIG). The LIGO-based sensors outperformed LIG-based sensors, demonstrating approximately tenfold higher sensing responsivity when detecting changes at each humidity level, along with 1.25 to 1.75 times faster response/recovery times, making LIGO-based sensors more promising for humidity-monitoring applications. This study demonstrated laser ablation in a renewable and natural precursor as an eco-friendly and energy-efficient approach to directly synthesize LIGO with controllable oxidation levels.
This study aimed to evaluate the efficiency of combining acidification with adsorbents (zeolite and biochar) to mitigate the environmental impacts of pig slurry, focusing on ammonia (NH3) emission and nitrate (NO3 -) leaching. The four treatments were applied: 1) pig slurry (PS) alone as a control, 2) acidified PS (AP), 3) acidified pig slurry with zeolite (APZ), and 4) acidified pig slurry with biochar (APB). The AP mitigates NH3 emission and NO3 - leaching compared to PS alone. Acidification reduced the cumulative NH3 emission and its emission factor by 35.9% and 12.5%, respectively. The APZ and APB increased NH4 +-N concentration, with the highest level in APB, compared to AP. The NH4 + adsorption capacity of APB (0.90 mg g-1) was higher than that of APZ (0.63 mg g-1). The APB and APZ treatments induced less NH3 emission compared to AP. The cumulative NH3 emission was reduced by 12.2% and 27.6% in APZ and APB, respectively, compared to AP treatment. NO3 - leaching began to appear on days 12 and 13, and its peak reached on days 16 and 17, which were later than AP. The cumulative NO3 - leaching decreased by 17.7% and 25.0% in APZ and APB, respectively, compared to AP treatment. These results suggest that combining biochar or zeolite with acidified pig slurry is an effective method to mitigate NH3 emission and NO3 - leaching, with biochar being particularly effective.
Caprine cryptosporidiosis mainly occurs in young goats, with morbidity rates of 80%–100% and mortality over 50% in goat kids. However, limited research has been conducted on the impact of Cryptosporidium parvum, a diarrhea-causing pathogen, on the intestinal microbiota of goat kids. In this study, 16S rRNA-based metataxonomic analysis was performed to compare the microbial diversity and abundance of the gut microbiota between C. parvum-infected and uninfected goat kids. In total, 12 goat fecal samples were collected, including seven naturally C. parvum-infected and five uninfected goats from Chungcheongbuk-do, Korea. After amplification of the V3–V4 hypervariable region of the bacterial 16S rRNA, high-throughput sequencing was performed. The results showed differences in the microbial composition between C. parvum-infected and uninfected groups based on beta diversity. Firmicutes and Bacteroidetes were the most dominant phyla in both groups. However, no significant difference was observed in the Bacteroidetes/Firmicutes ratio between the two groups. Compared with the uninfected group, the C. parvum-infected group showed significantly higher abundances of Tyzzerella nexillis, Lactobacillus johnsonii, Butyricicoccus pullicaecorum, Enterococcus raffinosus, Enterococcus faecalis, and Negativicoccus massiliensis, and significantly reduced abundances of Aerococcus vaginalis, Faecalicoccus pleomorphus, Oribacterium parvum, and Coprococcus comes. These findings indicate that C. parvum infection, which is associated with diarrhea in neonatal goats, induces alterations in the caprine gut microbiota.
수염풍뎅이(Polyphylla laticollis manchurica)는 과거에는 흔히 발견되었으나, 1970년대 이후 한반도 내 개체수 가 급격히 감소하여 2005년 환경부에 의해 멸종위기 야생생물 Ⅰ급으로 지정되었다. 또한 해당종의 분자생물학적 연구는 멸종위기종이라는 특성으로 인해 제한적으로 진행되었다. 그로 인해 NCBI 등 공공 데이터베이스에서 제공되는 서열정보들 또한 부족한 실정이다. 이 연구는 이러한 한계를 극복하고 수염풍뎅이의 유전적 특성을 규명하기 위해 생물정보학적 기술을 활용하여 전사체 분석을 진행하였다. Illumina HiSeq 2500 플랫폼을 사용하여 53,433,048개의 RNA reads를 얻었으며, Trinity와 TGICL을 이용한 De novo 어셈블리 분석을 통해 18,172개의 unigenes를 생성하였다. 생성된 unigenes는 GO, KOG, KEGG, PANM DB를 활용하여 annotation을 진행하였다. 그 결과, GO 분석에서는 ‘binding and catalytic activities’와 관련된 항목이 높은 발현을 보였으며, KOG 분석의 경우 ‘Cellular Processes and Signals’ 범주가 높은 비율을 나타내었다. KEGG 분석을 통해 2,118개의 unigenes가 metabolic 카테고리에 annotation된 것을 확인하였다. SSR 모티프 분석에서는 AT/AT (42.90%) 모티프, AAT/ATT (13.13%) 모티프 순으로 많이 나타나는 것을 확인하였다. 이 연구를 통해 분석한 결과 들을 이용하여 유전자원 및 종 정보를 실시간 제공 및 정보 공유가 가능하도록 Database 및 web-interface를 구축하 였으며, 이러한 자료들은 국내 멸종위기종인 수염풍뎅이의 고유한 유전적 특성을 발굴 및 확보할 수 있는 기반자 료로써 활용될 수 있을 것으로 사료된다.