검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        2.
        2023.05 구독 인증기관·개인회원 무료
        Plutonium exhibits a variety of oxidation states and has a strong affinity for complexation with organic ligands. Isosaccharinic acid (ISA) is a major degradation product of cellulose materials present in the low to intermediate radioactive wastes. The interaction between trivalent plutonium and ISA can significantly impact the migration and containment of plutonium in the repository environment. In this study, formation of Pu(III) and ISA complexes was investigated at an ionic strength of 1 M of NaClO4 using UV-Vis absorption spectrophotometry. To exclude the effect of the Pu(III) oxidation, absorption spectra were measured within 10 min after adding ISA into Pu(III) solution and processed using HYPSPEC software for deconvolution after baseline correction. Several previous studies showed that the presence of ligands accelerates the oxidation of Pu(III) to Pu(IV). To investigate whether ISA complexation can also accelerate the Pu(III) oxidation, UV-Vis absorption spectra changes over 24 hours were analyzed as a function of the ratio of ISA to plutonium concentration.
        3.
        2023.05 구독 인증기관·개인회원 무료
        Dissolution behaviors of ThO2(cr) and PuO2(cr) in synthetic groundwater were investigated at room temperature (23  2°C) under atmospheric conditions. The synthetic groundwater was prepared according to the chemical composition of the KURT-DB3 groundwater. The pH and Eh of the synthetic groundwater were pH 8.9 and 0.5 V, respectively, and the major components were Na, K, Ca, Mg, Si, Cl, SO4, F and HCO3 ions. A few mg of ThO2(cr) and PuO2(cr) powder were added in the synthetic groundwater and the concentrations of Th and Pu in supernatant were monitored for 5 months of reaction time. The concentrations of Th before and after ultracentrifugation were compared, while the solid-liquid phase separation of Pu samples could not be applied due to the small volume of sample solutions. The concentrations of Th and Pu were measured by ICP-MS and alpha spectrometry, respectively. Geochemist’s Work Bench (GWB, standard, 17.0) was applied for the modeling with ThermoChimie TDB v. 11a, which was updated with the latest NEA-TDB (vol. 14). Aqueous species distributions and solubility limiting solid phases of Th and Pu under the synthetic groundwater conditions were evaluated. The results of geochemical modeling indicate that aqueous Th-OH-CO3 ternary species and Pu(IV) species are dominant in solutions equilibrated with ThO2(s) and PuO2(am, hyd), respectively. The dissolution behaviors of ThO2(cr) and PuO2(cr) are comparable to the dissolution of ThO2(aged, logKsp = 8.5) and the oxidative dissolution of PuO2(am, hyd) in the presence of PuO2(coll, hyd), respectively.