검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        2.
        2018.11 KCI 등재 서비스 종료(열람 제한)
        기존의 저수지 운영 연구들은 미래의 기후가 과거와 유사하다는 정상성의 가정을 전제로 하였다. 하지만 기후의 비정상성으로 인해 불확실성이 더욱 커질 경우에는 큰 불확실성에서도 안정된 최적해를 찾을 수 있는 로버스트 최적화 과정(Robust Optimization, 이하 RO)이 필요하다고 알려져 있다. RO는 입력자료의 비정상성으로 인해 야기되는 불확실성을 제어하는 로버스트 항을 목적함수에 추가하여 기존의 최적화 방법을 개선한다. 본 연구는 기후변화의 비정상성을 대비하는 저수지 운영규칙 산정을 위해 추계학적동적계획법(Stochastic Dynamic Programing, 이하 SDP)과 RO를 결합하는 Robust-SDP를 제안하였고, 이를 최근 4년간 가뭄을 겪었던 보령댐에 적용하였다. 즉, 비정상성이 반영된 미래 유입량 자료를 생성하고 이를 6가지의 평가지표와 2가지의 의사결정 지원그림을 사용하여 과거 유입량 자료로부터 산출된 저수지 운영규칙의 수행능력을 평가하 였다. 그 결과, Robust-SDP가 기후의 비정상성 하에서 극단적인 물 부족 사건의 발생률과 물 부족 사건의 실패의 크기를 감소시켰지만, 작은 크기의 물 부족 발생률은 증가하는 상충관계(trade-off)를 가져옴을 확인할 수 있었다. 이를 바탕으로 의사결정자가 우선시하는 평가지표의 결과에 따라 최적화 모형을 선택할 수 있음을 제안하였다.
        3.
        2018.08 KCI 등재 서비스 종료(열람 제한)
        수문모형의 매개변수 추정에 필요한 유량 관측 자료의 수집은 시·공간적으로 제한이 있어 우리나라도 아직 상당수의 미계측유역이 존재하며, 이를 보완하고자 주변 유역의 정보를 활용하는 지역화 방법들이 연구되어 왔다. 그러나 지역적 특성이나 기후 조건에 따라 지역화 방법의 결과가 상이하여 어느 지역에 어떠한 지역화 방법이 가장 우수하다고 판단하기 어렵다. 본 연구에서는 보편적으로 사용되는 지역화 방법인 지역회귀모형의 설명 변수에 공간근접모형으로 추정한 수문모형의 매개변수를 추가하여 회귀모형의 적합성을 향상시켰으며, 이를 하이브리드 지역화모형이라 정의하고 기존 방법들과 비교하였다. 계측유역으로는 관측 자료가 충분한 남한의 37개 유역을 선정하였고, 수문모형은 개념적 수문모형인 GR4J를 사용하였으며, 계측유역에 대한 수문모형의 매개변수 산정은 Shuffled complex evolution 알고리즘을 사용하였다. 유역 특성변수들 간 다중공선성을 고려하기 위해 Variation inflation factor를 사용하였고, Stepwise regression을 통해 회귀모형의 최적 설명변수를 선택하였다. 통계 값을 통해 모형의 적합성을 비교한 결과, 하이브리드 지역화모형에서 가장 작은 RMSE 값을 나타내었으며, 유역별 모의 값의 변동성이 줄어들어 결과의 불확실성 또한 낮아짐을 확인할 수 있었다. 따라서 하이브리드 모형이 미계측유역의 유출량 산정을 위한 하나의 대안이 될 수 있음을 확인하였다.