검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2012.03 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Triplet Ionospheric Observatory (TRIO) CubeSatforIon, Neutral, Electron MAgneticfields (CINEMA) is a CubeSat with the weight 3 kg that will be operated in the orbit conditions of about 800 km altitude and 90° inclination angle, using the S-band and ultra-high frequency (UHF)-band communication frequencies. Regarding the communication antenna loaded on the satellite, the two patch antennas has the downlink function in the S-band, whereas the two whip antennas has the function to receive the command sent by the ground station to the satellite in the UHF-band. The uplink ground station that communicates through the UHF-band with the CINEMA satellite was established at Kyung Hee University. The system is mainly composed of a terminal node controller, a transceiver, and a helical antenna. The gain of the helical antenna established at the Kyung Hee University ground station was 9.8 dBi. The output of the transceiver was set to be 5 W (6.9 dB) for the communication test. Through the far-field test of the established system, it was verified that the Roman characters, figures and symbols were converted into packets and transmitted to the satellite receiver in the communica\-tion speed of 9,600 bps.
        2.
        2012.03 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Thermal analysis and control design are prerequisite essential to design the satellite. In the space environment, it makes satellite survive from extreme hot and cold conditions. In recent years CubeSat mission is developed for many kinds of purpose. Triplet Ionospheric Observatory (TRIO)–CubeSat for Ion, Neutral, Electron, MAgnetic fields (CINEMA) is required to weigh less than 3 kg and operate on minimal 3 W power. In this paper we describe the thermal analysis and control design for TRIO-CINEMA mission. For this thermal analysis, we made a thermal model of the CubeSat with finite element method and NX6.0 TMG software is used to simulate this analysis model. Based on this result, passive thermal control method has been applied to thermal design of CINEMA. In order to get the better conduction between solar panel and chassis, we choose aluminum 6061-T6 for the material property of standoff. We can increase the average tempera\-ture of top and bottom solar panels from -70°C to -40°C and decrease the average temperature of the magnetometer from +93°C to -4°C using black paint on the surface of the chassis, inside of top & bottom solar panels, and magnetometer.