검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 11

        1.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Acetate, propionate, butyrate are the major soluble volatile fatty acids metabolites of fermented food waste leachates. This work investigate the effects of volatile fatty acid on the growth rate and NH4-N, PO4-P removal efficiency of mixotrophic microalgae Chlorella vulgaris to treat digested food waste leachates. The results showed that acetate, propionate and butyrate were efficiently utilized by Chlorella vulgaris and microalgae growth was higher than control condition. Similar trends were observed upon NH4-N and PO4-P consumption. Volatile fatty acids promoted Chlorella vulgaris growth, and nutrient removal efficiencies were highest when acetate was used, and butyrate and propionate showed second and third. From this work it could be said that using mixotrophic microalgae, in this work Chlorella vulgaris, fermented food waste leachates can be treated with high efficiencies.
        4,000원
        2.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the effects of the light conditions on the productivity of scenedesmus dimorphus in the continuous mass cultivation system. To compare the algal productivity according to the light conditions, S. dimorphus was cultivated continuously under the wide range of light intensity(200-600 PPFD) and various light wavelength(white light and red-blue mixed light). After 100 days of cultivation under the different light intensity, the productivity of S. dimorphus increased as light intensity decreased. So, the productivity was maximized as 100 mg/L/d when light intensity was 200 PPFD. In case of light wavelength, the productivity of S. dimorphus was enhanced about 20% with the white light compared to that of the red-blue mixed light. Consequently, the optimal light conditions for the continuous mass cultivation of S. dimorphus were 200 PPFD as light intensity and white light as light wavelength.
        4,000원
        3.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the effect of a co-culture of Scenedesmus dimorphus and nitrifiers using artificial wastewater on the removal of ammonium, nitrate and phosphate in the advanced treatment. To test the synergistic effect of the co-culture, we compared the co-culture treatment with the cultures using S. dimorphus-only and nitrifiers-only treatment as controls. After 6 days of incubation, nitrate was removed only in the co-culture treatment and total amount of N removal was 1.3 times and 1.6 times higher in the co-culture treatment compared to those in the S. dimorphus- and nitrifiers-only treatments, respectively. In case of total amount of P, co-culture treatment removed 1.2 times and 12 times more P than the S. dimorphus -and nitrifiers-only conditions, respectively. This indicates that the co-culture improved removal rates for ammonium, nitrate, and phosphate. This further implies that there was no need for denitrification of nitrate and luxury uptake of P processes because nitrate and phosphate can be removed from the uptake by S. dimorphus. In addition, co-culture condition maintained high DO above 7 mg/L without artificial aeration, which is enough for nitrification, implying that co-culture has a potential to decrease or remove aeration cost in the wastewater treatment plants.
        4,000원
        4.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        VFAs like acetate are the major soluble metabolites of food waste leachates after digested. Therefore this study investigates the effect of acetate on growth rate and nutrient removal efficiency of Chlorella vulgaris to treat digested food waste leachates. The initial acetate concentration varied from 0 to 20 mM. As a result, Chlorella vulgaris growth rate was increased as high as the concentrations ranged from 0 to 20 mM. The same trend was observed with NH4-N and PO4-P consumption. The highest growth rate and the highest NH4-N, PO4-P removal rate were observed at acetate concentration of 20 mM. The microalgae growth rate and NH4-N, PO4-P removal rates were 1.5, 1.8, 2.3 times higher than the condition without acetate.
        4,000원
        5.
        2014.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Microalgae is known as one alternative energy source of the fossil fuel with the small size of 5 ~ 50 µm and negative charge. Currently, the cost of microalgae recovery process take a large part, about 20 - 30% of total operating cost. Thus, the microalgae recovery method with low cost is needed. In this study, the optimum current for Scenedesmus dimorphus recovery process using electrocoagulation techniques was investigated. Under the electrical current, Al metal in anode electrode is oxidized to oxidation state of Al3+. In the cathode electrode, the water electrolysis generated OH- which combine with Al3+ to produce Al(OH)3. This hydroxide acts as a coagulant to harvest microalgae.Before applying in 1.5 L capacity electrocoagulation reactor, Scenedesmus dimorphus was cultured in 20 L cylindrical reactor to concentration of 1 OD.The microalgae recovery efficiency of electrocoagulation reactor was evaluated under different current conditions from 0.1 ~ 0.3 A. The results show that, the fastest and highest recovery efficiency were achieved at the current or 0.3 A, which the highest energy efficiency was achieved at 0.15 A.
        4,000원
        6.
        2015.05 서비스 종료(열람 제한)
        This study investigated the effect of NH4 + concentrations on microalgae growth by appling mixotrophic microalgae chlorella vulgaris in order to treat anaerobic digested food waste leachate. The growth rate and final microalgae growth were an order as 400 > 100 > 800 > 1300 mg-N/L. As results, The growth rate and final growth of microalgae were highest at ammonia concentration of 400 mg-N/L, On the other hand microalgae growth was inhibited when ammonia concentrations were over 800 mg-N/L. high concentrations of nitrogen over 800 mg-N/L interrupt the growth of microalgae. All of nitrogen and phosphorus were removed by microalgae at the ammonia concentration of 100~400 mg-N/L. In addition, when ammonia concentration was over 800 mg-N/L, the removal of nitrogen and phosphorus was limited mainly due to the microalgae growth limit. It was possible to treat anaerobic digested food waste leachate with mixotrophic microalgae when the ammonia concentration was controlled below 400 mg-N/L.
        7.
        2015.05 서비스 종료(열람 제한)
        There is about 80% organic acid in the Food wastes leachate and organic acid can be used as organic carbon source for mixotrophic microalgae. The mixotrophic cultivation is that the combination of autotrophic and heterotrophic cultivation, where inorganic and organic carbon sources are used in their methabolism simultaneously. Therefore, this study investigated the effect of various organic acid on the microalgae when Food wastes leachate treatment. Chlorella vulgaris was used in this study, also NaHCO3 is supplied at all conditions as inorganic carbon source. In order to see the effect of organic carbon sources centrally, the carbon source conditions was set in 5 conditions - glucose known to have excellent effectiveness to increase of biomass productivity 1500 mg-COD/L, acetate 1500 mg-COD/L, isobutyrate 1500 mg-COD/L, propionate 1500mg-COD/L and the mixed organic acid (acetate, isobutyrate, propionate each 500 mg-COD/L). This study evaluated final biomass production, consumption of organic carbon, and N,P removal. In the result, the final biomass productivity by using glucose, acetate and isobutyrate is the highest level, followed by mixed organic acid and propionate. This is same aspect in N,P removal; the more rapid growth rate is, the more rapid N,P removal rate is. In the view of consumption of organic carbon, acetate make best use among organic acid.
        8.
        2015.05 서비스 종료(열람 제한)
        This study aims to increase the organic carbon, nitrogen and phosphorus removal efficiencies than the conventional method and meet higher effluent water quality standards by co-culture with bacteria in activated sludge in the aeration tank. By the co-culture in mixotrophic conditions through metabolic characterization of Scenedesmus dimorphus and bacteria in the aeration activated sludge, assessed how the impact on the organic matter, nitrogen and phosphorus removal rate. In addition, the study was to determine if it is possible to supply the oxygen necessary for the bacteria through the photosynthesis of algae without aeration. To test the synergistic effects of the co-culture, we compared co culture with S. dimorphus - only, Bacteria - only as a controls. In the co-culture condition inoculation ratio is based on the TSS concentration S. dimorphus and bacteria 1 : 5 (w / w), 5 : 5 (w / w) at a ratio. The growth rate of S. dimorphus - only condition was higher, which was 10 times and 2 times lower compared to B : A (5 : 1), B : A (5 : 5) respectively. Organic carbon removal rate of S. dimorphus - only condition was lower than other conditions, the remaining conditions were consumed at a similar rate. In the co-culture of Mixed bacteria and S. dimorphus, ammonium and phosphate removal rate has been high. But, nitrate removal rate showed a tendency to decrease compared to the Bacteria-only condition. When considering the Ammonium, nitrate and phosphate removal rate, N, P removal efficiency which is most excellent in terms of bacteria, such as S. dimorphus ratio (5 : 5) were co-cultured in the conditions. DO was maintained at 3 mg/L or more under all conditions. So, implying co-culture has the potential to decrease aeration costs.
        9.
        2015.05 서비스 종료(열람 제한)
        This study investigated the semi-continuous and continuous cultivation of microalgae-sludge for artificial digested food wastes leachate treatment, and the effect of hydraulic retention times(HRT) on microalgae growth and nutrient removal. In this study, two reactors were examined the HRTs from 4 to 1 day, the Chlorella vulgaris cell density of semi-continuous and continuous cultivation reached a maximum value at HRT 3 day, then decreasing HRT to 2 day and 1 day the Chlorella vulgaris cell density was decreased. The maximum Chlorella vulgaris cell density in semi-continuous cultivation was 1.4 times higher than continuous cultivation. The maximum NH4-N, PO4-P removal efficiency was 100%, 75.7% with HRT of 3 day in semi-continuous cultivation, while 96.5%, 65.7% with HRT of 4 day in continuous cultivation. These results indicate that semi-continuous cultivation is more suitable than continuous cultivation. And the effect of increased light intensity from 100 μmol/m²/s to 400 μmol/m²/s was also evaluated, as the result, increased light intensity improved Chlorella vulgaris cell growth and nutrient removal.
        10.
        2013.01 KCI 등재 서비스 종료(열람 제한)
        The effects of NaCl concentration on bio-hydrogen production and microbial community by dark-fermentation were evaluated. The examined NaCl concentration was varied from 0 to 5%. When NaCl concentration ranged from 0 to 3%, the hydrogen production was insignificantly affected. 4% or more NaCl concentration decreased accumulated hydrogen production and the lag time was longer. In addition, the metabolite pathway of the bacteria were shifted from butyrate to acetate by microbial community changes with high concentration of NaCl. FISH analysis was achieved to analyze the microbial community after the dark-fermentation performance. Hydrogen producing bacteria, Clostridium sp. Cluster I and Cluster XI, was dominated with 0 ~ 3% of NaCl, while Eubacteria, general bacteria, was dominated with 4 ~ 5% of NaCl. Therefore, the growth and hydrogen production of the hydrogen producing bacteria were inhibited with over 4% of NaCl.