검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2008.12 KCI 등재 서비스 종료(열람 제한)
        2003년에 이상적으로 많이 발생하여 벼에 심각한 피해를 가져온 혹명나방의 재배방법별, 엽록소 함량별 피해실태를 조사하여 피해에 따른 수량반응, 미질변화 등을 구명하고자 조사한 결과는 다음과 같다. 1. 혹명나방의 피해가 심할수록 벼의 등숙비율, 천립중의 감소와 복백립 등 미숙립의 증가에 따른 완전미 비율이 감소되어 완전미 수량이 피해가 심한 곳에서 36% 감소되었다. 2. 혹명나방의 피해가 심할수록 쌀의 외관상 품위가 떨어질 뿐만 아니라 단백질함량이 높아져 식미치는 감소되어 미질이 급격히 저하되었다. 3. 질소질 비료의 시용량이 증가할수록 혹명나방에 의한 피해는 증가하였으며, 특히 주남벼의 경우 질소량이 증가할수록 피해가 급증하였다. 4. 질소 시비량이 추천 시비량인 11 kg/10a를 초과시 피해엽율이 60% 이상으로 급증하였고, 60% 이상 피해를 입은 엽의 비율도 25%이상으로 늘어나 수량 감수 요인으로 작용하였다.
        2.
        2007.12 KCI 등재 서비스 종료(열람 제한)
        A field experiment was conducted to investigate effects of application time and rate of biofertilizer alone and in combination with chemical NPK fertilizer on growth, yield and quality of rice. The biofertilizer used composted food waste as substrate and added with effective microorganism. The treatments included recommended NPK fertilizer(RF, 11-5.5-4.8kg~;10a-1 ), half recommended NPK fertilizer(HRF, 5.5-2.8-2.4kg~;10a-1 ), half recommended NPK fertilizer plus 250kg~;10a-1 biofertilizer(HRF+Bio 250) and 500kg~;10a-1 biofertilizer(HRF+Bio 500). The biofertilizer treatments were applied at 0, 5 and 10 days before transplanting(DBT). Grain yield of HRF+Bio 250 at 5 DBT(648.4kg~;10a-1 ) was statistically similar to the highest obtained in the RF(654.1kg~;10a-1 ). Tiller numbers at HRF plus biofertilizer treatments were already high during the maximum tillering stage, and were similar with that of the RF and higher than that of the HRF during heading stage. Likewise, ripening ratio at HRF plus biofertilizer treatments was similar with that of the RF and higher than that of the HRF. Furthermore, all the biofertilizer treatments improved protein content but reduced the amylose content and palatability compared to treatments with chemical NPK fertilizer alone. Thus, HRF+Bio 250 at 5 DBT can be used to save 50% chemical NPK fertilizer and at the same time obtain an improved rice grain yield and quality.
        3.
        2007.12 KCI 등재 서비스 종료(열람 제한)
        The effect of mixed treatments of wood vinegar and sulfonylurea-based herbicides on weed control, yield and yield components, and quality of rice was investigated. Two herbicides were tested namely: imazosulfuron-ethyl+thiobencarb[ethyl-1-(2-chloroimidazo[1,2-α ]pyridin-3-ylsulfonyl)-3-(4,6-dimethoxypyrimidin-2-yl) urea+S-4-chlorobenzyl diethyl(thiocarbamate)], and bensulfuronmethyl+butachlor [methyl α -[(4,6-dimethoxypyrimidin-2-ylcarbamoyl)sulfamoyl]-o-toluate+N-butoxymethyl-2-chloro-2',6'-diethylacetanilide]. The experiment was carried out in a randomized complete block design with 3 replications and 5 treatments. Treatments used were recommended(RH: 100%) and half-recommended(HRH: 50%) application rates of each herbicide. Half-recommended application rates were combined with 1 mL wood vinegar 500mL~;water-1 (500) and 1 mL wood vinegar 1000mL~;water-1 (1000) wood vinegar. Plots for no herbicide treatments were also prepared and used as control. Results showed that wood vinegar significantly increased efficacy of HRH in bensulfuron-methyl+butachlor while high efficacy was already obtained in HRH treatment of imazosulfuron-ethyl+thiobencarb. Wood vinegar did not improve the efficacy of imazosulfuron-ethyl+thiobencarb but improved rice yield. Significantly similar rice yields were obtained in the HRH+1000 WV and RH treatments of both herbicides. There were no significant variations in the yield components among the treatments; however, differences in yield can be attributed to the variations in the spikelet number and ripening ratio. Data on rice quality analysis did not show clear trend on the effects of the treatments on grain appearance and nutritional quality.
        4.
        2007.09 KCI 등재 서비스 종료(열람 제한)
        The effect of biofertilizer in enhancing nutrient quality and antioxidant property of rice grain was investigated. The experiment was carried out in a randomized complete block design with 3 replications and 7 treatments namely : RF = N-P2O5-K2O(11-5.5-4.8kg~;10a-1); half of the recommended fertilizer rate, HRF=N-P2O5-K2O(5.5-2.75-2.4kg~;10a-1): HRF+Bio 250=HRF combined with 250 kg Biofertilizer 10 a-1 ; HRF+Bio 500=HRF combined with 500 kg Biofertilizer 10 a-1; Bio 250=250 kg Biofertilizer 10 a-1; Bio 500=500 kg Biofertilizer 10 a-1; and NF=No Fertilizer. Results showed that HRF+Bio 500 obtained a significantly higher protein content but a significantly lower amylose content compared with RF and NF treatments. Highest phytic acid content was recorded in NF treatment while the lowest was observed in HRF+500 treatment. The highest values in both electron donating ability and reducing power were obtained in HRF+Bio 500 treatment. All treatments obtained higher reducing power than that of the RF treatment and that NF treatment showed comparable values in both electron donating ability and reducing power with those of the treated plots. Highest antimutagenicity property was also observed in HRF+Bio 500 treatment followed by Bio 500 treatment. This study showed the possibility of using biofertilizer to enhance nutritional quality and antioxidant property of rice.
        6.
        2001.06 KCI 등재 서비스 종료(열람 제한)
        Two rice cultivars of the japonica type, ozone-resistant Ilpumbyeo (IL) and ozone-susceptible Keu-mobyeo#l (KM) were exposed to ozone (O3 ) at 0.15 ppm for 30 days. The available nutrient regimes were varied by doubling the supply of nitrogen (N), phosphorus (P) and potassium (K) within a basic fertilizer status (N, P, K; 15, 12, 12 kg l0a-1 ). There was little difference on plant height between ozone-treated and nontreated plants. The most significant ozone stress on tiller number was shown on the 30th day of ozone exposure. Slight recovery from ozone stress was noted on the 60th day. On the 30th day, tiller number was greatly decreased by 40.8% in IL and 64.6% in KM, whereas at a high nitrogen supply regime (2N), it was decreased by 21.4% in IL and 42.7% in KM as compared to the control not treated with ozone at basic fertilizer status. The inhibition of tiller production caused by ozone exposure was alleviated on the 60th day. In both cultivars, number of spikelets per plant and weight of 100 grains were affected little by the ozone treatment irrespective of nutrient regime. However, the number of panicles per plant and yield were reduced significantly. In both cultivars, yield of ozone-treated plants with 2N status was 12.4-16.1 % higher than that of the ozone-treated plants with basic nutrient status. A significant yield decrease of 47.8% and 33.4% was observed for IL and KM, respectively, in ozone-treated plants with higher potassium (2K) status.
        7.
        2001.03 KCI 등재 서비스 종료(열람 제한)
        Ozone (O3 )-induced changes in chlorophyll content and specific activities of antioxidant enzymes, such as superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) were investigated in two rice cultivars (Oryza sativa L.) grown under variable nutrient treatments. For this study, two rice cultivars of Ilpumbyeo (IL) and Keumobyeo#l (KM), which were known as resistant and susceptible to O3 , respectively, were exposed to O3 at 0.15ppm for 30 days and investigated with 10 days interval. The available nutrient regimes were varied by doubling the supply of nitrogen (N), phosphorus (P) and potassium (K) Within a basic fertilizer status (N, P, K; 15, 12, 12kg/l0a-1 ). In both cultivars and at all nutrient status, chlorophyll content in O3 -treated plants decreased with prolonged treatment period, although higher N, P and K supply with O3 treatment alleviated the decrease in chlorophyll content. The activities of almost all enzymes investigated for this study were decreased during initial stages of O3 - exposure except GPX which maintained higher activity throughout the exposure period than the non-treated plant. However, the antioxidant enzymes in O3 -treated plants showed almost the same or higher activities on 30 days after O3 - exposure. The most significant changes in activities were observed in GR of the O3 -treated leaves. With the prolonged treatment period, the activity of GR at 30 days was increased by 3-8 times compared to those in 10 days. Most of the investigated enzymes showed very similar tendency to O3 treatment in all fertilizer status. There was no observed evidence for enhanced detoxification of O3 -derived activated oxygen species in plants grown under higher fertilizer status compared with that in plants grown under basic fertilizer status. The increase in the activities of SOD, APX and GR in rice leaves by relatively long-term treatment with O3 at low concentration is considered to indicate that the plant became adapted to the O3 stress and the protection system increased its capacity to scavenge toxic oxygen species. Our results in two rice cultivars indicated that there was little difference in the activities of antioxidant enzymes between IL and KM, which were known as resistant and susceptible cultivar to O3