검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2017.10 KCI 등재 서비스 종료(열람 제한)
        Recently, the air quality issue came to the fore to the occupants of indoor areas with the detection of a large amount of indoor air pollutants such as formaldehyde that causes headache and atopic dermatitis. In order to address this issue, the use of indoor air purifying plants is considered positively as an ecological improvement option. However, the objective performance verification on indoor air-conditioning air volume has not been sufficient. This study aims to verify possible linkage with a building’s air conditioning equipment in order to optimize indoor air-conditioning effects by vegetation bio-filters. To this end, 4 different types of air filter material and AHU (Air Handling Unit) system were linked under air conditions of total wind volume of 400, 600, 800, 1,000 CMH and pressure loss by material was monitored objectively. Finally, material-specific power consumption for system operation was calculated to review energy efficiency. As for pressure loss by material, in terms of total wind volume of 800±1.8 CMH, Pre filter was lowest at –11.69 mmAq and LMF-based vegetation mat was highest at –219.94 mmAq. Based on this, as for material-specific power consumption, the Pre filter, which has the lowest pressure loss, was expected to have power consumption 94.7% lower than the LMF-based vegetation mat.
        2.
        2017.10 KCI 등재 서비스 종료(열람 제한)
        People today spend 80% of their time indoors and have been showing keen interests in air quality since 2015 due to harmful chemical issues such as humidifier disinfectants. Although plant-based air purification method is widely known to the public, its objective performance and air-conditioning efficiency have been limited. In particular, in the case of publicly used places frequented by many and unspecified persons, high air-conditioning wind volume is required and it is difficult to secure the required total wind volume with the current air purification method using plants. Therefore, in order to secure air-conditioning wind volume when linked with plants, this study aims to verify stability in using vegetation units that can be linked with building air-conditioning equipment. To this end, vegetation units and AHU were linked for 40 hours under no irrigation conditions and ecological environmental changes were monitored objectively. Pressure loss by total wind volume of vegetation units was verified, and soil moisture, Chlorophyll, and FVC were monitored. First, soil moisture was converged to 0% at a spot where wind volume is concentrated in vegetation units. In both of two types of tree species, chlorophyll showed a change of 1.2 - 2.9 SPAD and FVC showed a change of 4-29% after the experiment.