본 논문에서는 구조물의 부분 변위값으로 전체 구조물의 변위 형상을 예측할 수 있는 인공지능 학습기법을 개발하였으며, 개발된 기술의 성능을 실험을 통해 평가하였다. 3차원 공간에서 변위 형상 및 노드 위치 좌표의 특성을 학습에 반영할 수 있는 Image-to-Image 변위 형상 학습과 위치 특징을 결합한 변위 상관 학습 방법을 제시하였다. 개발된 인공지능 학습방법의 성능을 평가하기 위해 목업 구 조 실험을 진행하였고, 3D 스캔으로 측정한 변위값과 인공지능으로 예측한 결과를 비교하였다. 비교 결과 인공지능 예측 결과는 3D 스캔 측정 결과에 비해 5.6~5.9%의 오차율을 보여 적정 성능을 보였다.
This paper proposes a sensor-fusion technique where rho data sets for the previous moments are properly transformed and fused into the current data sets to enable accurate measurement, such as, distance to an obstacle and location of the service robot itself. In the conventional fusion schemes, the measurement is dependent only on the current data sets. As the results, more of sensors are required to measure a certain physical promoter or to improve the accuracy of the measurement. However, in this approach, intend of adding more sensors to the system, the temporal sequence of the data sets are stored and utilized for the measurement improvement. Theoretical basis is illustrated by examples md the effectiveness is proved through the simulation. Finally, the new space and time sensor fusion (STSF) scheme is applied to the control of a mobile robot in the indoor environment and the performance was demonstrated by the real experiments.