검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Currently, Japan is undertaking a nationwide project to measure and map radioactive contamination around Fukushima, as part of the efforts to restore normalcy following the nuclear accident. The Japan Atomic Energy Agency (JAEA) manages the Fukushima Environmental Safety Center, located approximately 20 km north of the Fukushima Daiichi nuclear power plant in Minamisōma City, Fukushima Prefecture. In collaboration with the JAEA, this study involved conducting comparison experiments and analyses with radiation detectors in high radiation environments, a challenging task in Korean environments. Environmental radiation surveys were conducted using three types of detectors: CZT, NaI(Tl), and LaBr3(Ce), across two contaminated areas. Dose rate values were converted using dose rate conversion factors for each detector type, and dose rate maps were subsequently created and compared. The detectors yielded similar results, demonstrating their feasibility and reliability in high radiation environments. The findings of this study are expected to be a crucial reference for enhancing the verification and supplementation of procedures and methods in future radiation measurements and mobile surveys in high-radiation environments, using these three types of radiation instruments.
        4,900원
        2.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Concerning the apprehensions about naturally occurring radioactive materials (NORM) residues, the International Atomic Energy Agency (IAEA) and its member nations have acknowledged the imperative to ensure the radiation safety of NORM industries. Residues with elevated radioactivity concentrations are predominantly produced during NORM processing, in the form of scale and sludge, referred to as technically enhanced NORM (TENORM). Substantial quantities of TENORM residues have been released externally due to the dismantling of NORM processing factories. These residues become concentrated and fixed in scale inside scrap pipes. To assess the radioactivity of scales in pipes of various shapes, a Monte Carlo simulation was employed to determine dose rates corresponding to the action level in TENORM regulations for different pipe diameters and thicknesses. Onsite gamma spectrometry was conducted on a scrap iron pipe from the titanium dioxide manufacturing factory. The measured dose rate on the pipe enabled the estimation of NORM concentration in the pipe scale onsite. The derived action level in dose rate can be applied in the NORM regulation procedure for on-site judgments.
        4,000원
        3.
        2023.05 구독 인증기관·개인회원 무료
        In-situ gamma spectrometer with mobile equipment can be used for rapid determination of radioactivity in the environment within a very short interval. 2”×2” NaI(Tl) scintillator are used to build a mobile radiation measurement system (called as Monitoring of Ambient Radiations of KAERI for Backpack, MARK-B3) with a signal processing unit, and GPS and interface units to a PC for wireless controlling system. Development of the survey system is to measure ambient gamma-ray spectrometry for estimating ground radioactivity and radiation dose in the environment. The ambient dose rate is estimated using G-factor method. For determination of G-factor, we conducted MCNP simulations in assumptions of various incident photons into the detector system. And the scintillator was exposed to Cs-137 source in the range of 1- 300 mGy/hr. Calculated dose rates for different simulation results were compared to the irradiated dose rate to derive correction factor of G-factor. To evaluate performance of the MARK-B3, in-situ gamma spectrometry was conducted in Jeju island.
        4.
        2023.05 구독 인증기관·개인회원 무료
        Airborne surveys are an essential analysis method for rapid response and contamination identification in the early event of a radiation emergency. On the other hand, airborne surveys are far from the ground, so it is necessary to convert the dose rate at a height of 1 m above the ground. In order to improve the accuracy of the analysis value, a lot of analysis of the measurement data is required. In our previous research, we developed MARK-A1, an instrument for rapid radiation aerial survey in high radiation environment, and MARK-M1, a multipurpose instrument for radiation detection. In this study, a large unmanned aerial vehicle (UAV) was used to conduct airborne surveys using three types of detectors in the Jeju Island environment. The NaI(Tl) detector uses one 3-inch scintillator (38 mm φ × 38 mm H), and the LaBr3 detector uses two 2-inch scintillators (25 mm φ × 25 mm H). The CZT detector uses a detector with dimensions of (15 mm × 15 mm × 7.5 mm). The UAV has a payload of 15 kg (J10, JCH systems Inc. Seoul, Korea). Three different detectors were operated at a constant height of 20 m, 30 m, and 50 m. The flight experiments were performed in the west near Jeju City. Dose rate conversion factors were used to convert the dose rate from the measured spectra, and hovering flights were conducted between 1 and 50 meters to derive altitude correction factors. In this paper, the data measured with each detector in the same area were compared and the differences were derived.