검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        2.
        2020.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In the molecular cloud G33.92+0.11A, massive stars are forming sequentially in dense cores, probably due to interaction with accreted gas. Cold dense gas, which is likely the pristine gas of the cloud, is traced by DCN line and dust continuum emission. Clear chemical differences were observed in different source locations and for different velocity components in the same line of sight. Several distinct gas components coexist in the cloud: the pristine cold gas, the accreted dense gas, and warm turbulent gas, in addition to the star-forming dense clumps. Filaments of accreted gas occur in the northern part of the A1 and A5 clumps, and the velocity gradient along these features suggests that the gas is falling toward the cloud and may have triggered the most recent star formation. The large concentration of turbulent gas in the A2 clump seems to have formed mainly through disturbances from the outside.
        4,000원
        4.
        2014.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We study the physical and chemical properties of the molecular clump hosting a young stellar cluster, IRAS 20160+3636, which is believed to have formed via the “collect and collapse” process. Physical parameters of the UC Hii region associated with the embedded cluster are measured from the radio continuum observations. This source is found to be a typical Galactic UC Hii region, with a B0.5 type exciting star, if it is ionized by a single star. We derive a CN/HCN abundance ratio larger than 1 over this region, which may suggest that this clump is being affected by the UV radiation from the Hii region.
        4,000원
        5.
        2014.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We have observed the deuterated methanol, CH3OD, toward the hot core MM1 in the massive star-forming region DR21 (OH) using the Submillimeter Array with a high angular resolution of about 1 arcsecond. The position of the hot core associated with the sub-core MM1a was confirmed to coincide with the continuum peak where an embedded young stellar object is located. The column density of CH3OD was found to be about (2 ± 1) x 1016 cm-2 toward the MM1a center. The abundance ratio CH3OD/CH3OH was measured to be ~ 0.45, which is about the median value for low mass star-forming cores but much larger than those of the massive star-forming cores. The ratio is believed to change depending on, for example, the chemical condition, the temperature and the density of the source. This ratio may further depend on the evolutionary phase especially in the massive-star-forming cores. The sub-core MM1a is thought to be in the very early phase of star formation. This large abundance ratio found in this source indicates that even the massive star-forming cores, during a relatively short period in the very early stage of star formation, may also show a chemical state resulted from the cold and dense pre-collapsing phase, the enhanced deuteration as found in low mass star-forming cores.
        4,000원