검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 15

        2.
        2022.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Korea Pathfinder Lunar Orbiter (KPLO), also known as Danuri, was successfully launched on 4 Aug. from Cape Canaveral Space Force Station using a Space-X Falcon-9 rocket. Flight dynamics (FD) operational readiness was one of the critical parts to be checked before the flight. To demonstrate FD software’s readiness and enhance the operator’s contingency response capabilities, KPLO FD specialists planned, organized, and conducted four simulations and two rehearsals before the KPLO launch. For the efficiency and integrity of FD simulation and rehearsal, different sets of blind test data were prepared, including the simulated tracking measurements that incorporated dynamical model errors, maneuver execution errors, and other errors associated with a tracking system. This paper presents the simulation and rehearsal results with lessons learned for the KPLO FD operational readiness checkout. As a result, every functionality of FD operation systems is firmly secured based on the operation procedure with an enhancement of contingency operational response capability. After conducting several simulations and rehearsals, KPLO FD specialists were much more confident in the flight teams’ ability to overcome the challenges in a realistic flight and FD software’s reliability in flying the KPLO. Moreover, the results of this work will provide numerous insights to the FD experts willing to prepare deep space flight operations.
        3.
        2021.08 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        This technical paper deals the practical transformation algorithms between several lunar reference frames which will be used for Korea pathfinder lunar orbiter (KPLO) flight operation. Despite of various lunar reference frame definitions already exist, use of a common transformation algorithm while establishing lunar reference frame is very important for all members related to KPLO mission. This is because use of slight different parameters during frame transformation may result significant misleading while reprocessing data based on KPLO flight dynamics. Therefore, details of practical transformation algorithms for the KPLO mission specific lunar reference frames is presented with step by step implementation procedures. Examples of transformation results are also presented to support KPLO flight dynamics data user community which is expected to give practical guidelines while post processing the data as their needs. With this technical paper, common understandings of reference frames that will be used throughout not only the KPLO flight operation but also science data reprocessing can be established. It is expected to eliminate, or at least minimize, unnecessary confusion among all of the KPLO mission members including: Korea Aerospace Research Institute (KARI), National Aeronautics and Space Administration (NASA) as well as other organizations participating in KPLO payload development and operation, or further lunar science community world-wide who are interested in KPLO science data post processing.
        4.
        2021.06 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        In this work, preliminary launch opportunities from NARO Space Center to the Sun-Earth Lagrange point are analyzed. Among five different Sun-Earth Lagrange points, L1 and L2 points are selected as suitable candidates for, respectively, solar and astrophysics missions. With high fidelity dynamics models, the L1 and L2 point targeting problem is formulated regarding the location of NARO Space Center and relevant Target Interface Point (TIP) for each different launch date is derived including launch injection energy per unit mass (C3), Right ascension of the injection orbit Apoapsis Vector (RAV) and Declination of the injection orbit Apoapsis Vector (DAV). Potential launch periods to achieve L1 and L2 transfer trajectory are also investigated regarding coasting characteristics from NARO Space Center. The magnitude of the Lagrange Orbit Insertion (LOI) burn, as well as the Orbit Maintenance (OM) maneuver to maintain more than one year of mission orbit around the Lagrange points, is also derived as an example. Even the current work has been made under many assumptions as there are no specific mission goals currently defined yet, so results from the current work could be a good starting point to extend diversities of future Korean deep-space missions.
        5.
        2020.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        The ground tracking support is a critical factor for the navigation performance of spacecraft orbiting around the Moon. Because of the tracking limit of antennas, only a small number of facilities can support lunar missions. Therefore, case studies for various ground tracking support conditions are needed for lunar missions on the stage of preliminary mission analysis. This study analyzes the ground supporting condition effect on orbit determination (OD) of Korea Pathfinder Lunar Orbiter (KPLO) in the lunar orbit. For the assumption of ground support conditions, daily tracking frequency, cut-off angle for low elevation, tracking measurement accuracy, and tracking failure situations were considered. Two antennas of deep space network (DSN) and Korea Deep Space Antenna (KDSA) are utilized for various tracking conditions configuration. For the investigation of the daily tracking frequency effect, three cases (full support, DSN 4 pass/day and KDSA 4 pass/day, and DSN 2 pass/day and KDSA 2 pass/day) are prepared. For the elevation cut-off angle effect, two situations, which are 5 deg and 10 deg, are assumed. Three cases (0%, 30%, and 50% of degradation) were considered for the tracking measurement accuracy effect. Three cases such as no missing, 1-day KDSA missing, and 2-day KDSA missing are assumed for tracking failure effect. For OD, a sequential estimation algorithm was used, and for the OD performance evaluation, position uncertainty, position differences between true and estimated orbits, and orbit overlap precision according to various ground supporting conditions were investigated. Orbit prediction accuracy variations due to ground tracking conditions were also demonstrated. This study provides a guideline for selecting ground tracking support levels and preparing a backup plan for the KPLO lunar mission phase.
        6.
        2019.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        In this study, the observational arc-length effect on orbit determination (OD) for the Korea Pathfinder Lunar Orbiter (KPLO) in the Earth-Moon Transfer phase was investigated. For the OD, we employed a sequential estimation using the extended Kalman filter and a fixed-point smoother. The mission periods, comprised between the perigee maneuvers (PM) and the lunar orbit insertion (LOI) maneuver in a 3.5 phasing loop of the KPLO, was the primary target. The total period was divided into three phases: launch–PM1, PM1–PM3, and PM3–LOI. The Doppler and range data obtained from three tracking stations [included in the deep space network (DSN) and Korea Deep Space Antenna (KDSA)] were utilized for the OD. Six arc-length cases (24 hrs, 48 hrs, 60 hrs, 3 days, 4 days, and 5 days) were considered for the arc-length effect investigation. In order to evaluate the OD accuracy, we analyzed the position uncertainties, the precision of orbit overlaps, and the position differences between true and estimated trajectories. The maximum performance of 3-day OD approach was observed in the case of stable flight dynamics operations and robust navigation capability. This study provides a guideline for the flight dynamics operations of the KPLO in the trans-lunar phase.
        7.
        2019.09 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        This paper analyzes delta-Vs to maintain an extremely low altitude on the Moon and investigates the possibilities of performing a CubeSat mission. To formulate the station-keeping (SK) problem at an extremely low altitude, current work has utilized real-flight performance proven software, the Systems Tool Kit Astrogator by Analytical Graphics Inc. With a high-fidelity force model, properties of SK maneuver delta-Vs to maintain an extremely low altitude are successfully derived with respect to different sets of reference orbits; of different altitudes as well as deadband limits. The effect of the degree and order selection of lunar gravitational harmonics on the overall SK maneuver strategy is also analyzed. Based on the derived SK maneuver delta-V costs, the possibilities of performing a CubeSat mission are analyzed with the expected mission lifetime by applying the current flight-proven miniaturized propulsion system performances. Moreover, the lunar surface coverage as well as the orbital characteristics of a candidate reference orbit are discussed. As a result, it is concluded that an approximately 15-kg class CubeSat could maintain an orbit (30–50 km reference altitude having ±10 km deadband limits) around the Moon for 1–6 months and provide almost full coverage of the lunar surface.
        8.
        2018.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        In this study, orbit determination (OD) simulation for the Korea Pathfinder Lunar Orbiter (KPLO) was accomplished for investigation of the observational arc-length effect using a sequential estimation algorithm. A lunar polar orbit located at 100 km altitude and 90° inclination was mainly considered for the KPLO mission operation phase. For measurement simulation and OD for KPLO, the Analytical Graphics Inc. Systems Tool Kit 11 and Orbit Determination Tool Kit 6 software were utilized. Three deep-space ground stations, including two deep space network (DSN) antennas and the Korea Deep Space Antenna, were configured for the OD simulation. To investigate the arc-length effect on OD, 60-hr, 48-hr, 24-hr, and 12-hr tracking data were prepared. Position uncertainty by error covariance and orbit overlap precision were used for OD performance evaluation. Additionally, orbit prediction (OP) accuracy was also assessed by the position difference between the estimated and true orbits. Finally, we concluded that the 48-hr-based OD strategy is suitable for effective flight dynamics operation of KPLO. This work suggests a useful guideline for the OD strategy of KPLO mission planning and operation during the nominal lunar orbits phase.
        9.
        2018.09 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        In spite of a short history of only 30 years in space development, Korea has achieved outstanding space development capabilities, and became the 11th member of the “Space Club” in 2013 by launching its own satellites with its own launch vehicle from a local space center. With the successful development and operation of more than 10 earth-orbiting satellites since 1999, Korea is now rapidly expanding its own aspirations to outer space exploration. Unlike earth-orbiting missions, planetary missions are more demanding of well-rounded technological capabilities, specifically trajectory design, analysis, and navigation. Because of the importance of relevant technologies, the Korean astronautical society devoted significant efforts to secure these basic technologies from the early 2000s. This paper revisits the numerous efforts conducted to date, specifically regarding flight dynamics and navigation technology, to prepare for future upcoming planetary missions in Korea. However, sustained efforts are still required to realize such challenging planetary missions, and efforts to date will significantly advance the relevant Korean technological capabilities.
        10.
        2017.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        To ensure the successful launch of the Korea pathfinder lunar orbiter (KPLO) mission, the Korea Aerospace Research Institute (KARI) is now performing extensive trajectory design and analysis studies. From the trajectory design perspective, it is crucial to prepare contingency trajectory options for the failure of the first lunar brake or the failure of the first lunar orbit insertion (LOI) maneuver. As part of the early phase trajectory design and analysis activities, the required time of flight (TOF) and associated delta-V magnitudes for each recovery maneuver (RM) to recover the KPLO mission trajectory are analyzed. There are two typical trajectory recovery options, direct recovery and low energy recovery. The current work is focused on the direct recovery option. Results indicate that a quicker execution of the first RM after the failure of the first LOI plays a significant role in saving the magnitudes of the RMs. Under the conditions of the extremely tight delta-V budget that is currently allocated for the KPLO mission, it is found that the recovery of the KPLO without altering the originally planned mission orbit (a 100 km circular orbit) cannot be achieved via direct recovery options. However, feasible recovery options are suggested within the boundaries of the currently planned delta-V budget. By changing the shape and orientation of the recovered final mission orbit, it is expected that the KPLO mission may partially pursue its scientific mission after successful recovery, though it will be limited.
        11.
        2017.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        The first Korea lunar orbiter, Korea Pathfinder Lunar Orbiter (KPLO), has been in development since 2016. After launch, the KPLO will execute several maneuvers to enter into the lunar mission orbit, and will then perform lunar science missions for one year. Among these maneuvers, the lunar orbit insertion (LOI) is the most critical maneuver because the KPLO will experience an extreme velocity change in the presence of the Moon’s gravitational pull. However, the lunar orbiter may have a delayed LOI burn during operation due to hardware limitations and telemetry delays. This delayed burn could occur in different captured lunar orbits; in the worst case, the KPLO could fly away from the Moon. Therefore, in this study, the burn delay for the first LOI maneuver is analyzed to successfully enter the desired lunar orbit. Numerical simulations are performed to evaluate the difference between the desired and delayed lunar orbits due to a burn delay in the LOI maneuver. Based on this analysis, critical factors in the LOI maneuver, the periselene altitude and orbit period, are significantly changed and an additional delta-V in the second LOI maneuver is required as the delay burn interval increases to 10 min from the planned maneuver epoch.
        12.
        2016.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        In this study, the uncertainty requirements for orbit, attitude, and burn performance were estimated and analyzed for the execution of the 1st lunar orbit insertion (LOI) maneuver of the Korea Pathfinder Lunar Orbiter (KPLO) mission. During the early design phase of the system, associate analysis is an essential design factor as the 1st LOI maneuver is the largest burn that utilizes the onboard propulsion system; the success of the lunar capture is directly affected by the performance achieved. For the analysis, the spacecraft is assumed to have already approached the periselene with a hyperbolic arrival trajectory around the moon. In addition, diverse arrival conditions and mission constraints were considered, such as varying periselene approach velocity, altitude, and orbital period of the capture orbit after execution of the 1st LOI maneuver. The current analysis assumed an impulsive LOI maneuver, and two-body equations of motion were adapted to simplify the problem for a preliminary analysis. Monte Carlo simulations were performed for the statistical analysis to analyze diverse uncertainties that might arise at the moment when the maneuver is executed. As a result, three major requirements were analyzed and estimated for the early design phase. First, the minimum requirements were estimated for the burn performance to be captured around the moon. Second, the requirements for orbit, attitude, and maneuver burn performances were simultaneously estimated and analyzed to maintain the 1st elliptical orbit achieved around the moon within the specified orbital period. Finally, the dispersion requirements on the B-plane aiming at target points to meet the target insertion goal were analyzed and can be utilized as reference target guidelines for a mid-course correction (MCC) maneuver during the transfer. More detailed system requirements for the KPLO mission, particularly for the spacecraft bus itself and for the flight dynamics subsystem at the ground control center, are expected to be prepared and established based on the current results, including a contingency trajectory design plan.
        13.
        2015.09 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Characteristics of delta-V requirements for deploying an impactor from a mother-ship at different orbital altitudes are analyzed in order to prepare for a future lunar CubeSat impactor mission. A mother-ship is assumed to be orbiting the moon with a circular orbit at a 90 deg inclination and having 50, 100, 150, 200 km altitudes. Critical design parameters that are directly related to the success of the impactor mission are also analyzed including deploy directions, CubeSat flight time, impact velocity, and associated impact angles. Based on derived delta-V requirements, required thruster burn time and fuel mass are analyzed by adapting four different miniaturized commercial onboard thrusters currently developed for CubeSat applications. As a result, CubeSat impact trajectories as well as thruster burn characteristics deployed at different orbital altitudes are found to satisfy the mission objectives. It is concluded that thrust burn time should considered as the more critical design parameter than the required fuel mass when deducing the onboard propulsion system requirements. Results provided through this work will be helpful in further detailed system definition and design activities for future lunar missions with a CubeSat-based payload.
        14.
        2015.09 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        In this work, an efficient method with which to evaluate the high-degree-and-order gravitational harmonics of the non-sphericity of a central body is described and applied to state predictions of a lunar orbiter. Unlike the work of Song et al. (2010), which used a conventional computation method to process gravitational harmonic coefficients, the current work adapted a well-known recursion formula that directly uses fully normalized associated Legendre functions to compute the acceleration due to the non-sphericity of the moon. With the formulated algorithms, the states of a lunar orbiting satellite are predicted and its performance is validated in comparisons with solutions obtained from STK/Astrogator. The predicted differences in the orbital states between STK/Astrogator and the current work all remain at a position of less than 1 m with velocity accuracy levels of less than 1 mm/s, even with different orbital inclinations. The effectiveness of the current algorithm, in terms of both the computation time and the degree of accuracy degradation, is also shown in comparisons with results obtained from earlier work. It is expected that the proposed algorithm can be used as a foundation for the development of an operational flight dynamics subsystem for future lunar exploration missions by Korea. It can also be used to analyze missions which require very close operations to the moon.
        15.
        2014.09 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        In this paper, a brief but essential development strategy for the lunar orbit determination system is discussed to prepare for the future Korea’s lunar missions. Prior to the discussion of this preliminary development strategy, technical models of foreign agencies for the lunar orbit determination system, tracking networks to measure the orbit, and collaborative efforts to verify system performance are reviewed in detail with a short summary of their lunar mission history. Covered foreign agencies are European Space Agency, Japan Aerospace Exploration Agency, Indian Space Research Organization and China National Space Administration. Based on the lessons from their experiences, the preliminary development strategy for Korea’s future lunar orbit determination system is discussed with regard to the core technical issues of dynamic modeling, numerical integration, measurement modeling, estimation method, measurement system as well as appropriate data formatting for the interoperability among foreign agencies. Although only the preliminary development strategy has been discussed through this work, the proposed strategy will aid the Korean astronautical society while on the development phase of the future Korea’s own lunar orbit determination system. Also, it is expected that further detailed system requirements or technical development strategies could be designed or established based on the current discussions.