Hydride analysis is required to assess the mechanical integrity of spent nuclear fuel cladding. Image segmentation, which is a hydride analysis method, is a technique that can analyze the orientation and distribution of hydrides in cladding images of spent nuclear fuels. However, the segmentation results varied according to the image preprocessing. Inaccurate segmentation results can make hydride difficult to analyze. This study aims to analyze the segmentation performance of the Otsu algorithm according to the morphological operations of cladding images. Morphological operations were applied to four different cladding images, and segmentation performance was quantitatively compared using a histogram, betweenclass variance, and radial hydride fraction. As a result, this study found that morphological operations can induce errors in cladding images and that appropriate combinations of morphological operations can maximize segmentation performance. This study emphasizes the importance of image preprocessing methods, suggesting that they can enhance the accuracy of hydride analysis. These findings are expected to contribute to the advancements in integrity assessment of spent nuclear fuel cladding.
Recent advances in computer technology have made it possible to solve numerous challenges but require faster hardware development. However, the size of the classical computer has reached its physical limit, and researchers' interest in quantum computers is growing, and it is being used in various engineering fields. However, research using quantum computing in structural engineering is very insufficient. Therefore, in this paper, the characteristics of qubits, the minimum unit of quantum information processing, were grafted with the crow search algorithm to propose QCSA (quantum crow search algorithm) and compare the convergence performance according to parameter changes. In addition, by performing the optimal design of the example truss structure, it was confirmed that quantum computing can be used in the architectural field.
PURPOSES : This study aimed to develop a quantitative structure property relationships (QSPR) model to predict the density from the molecular structure information of the asphalt binder AAA1, a non-full connected structure mixed with a total of 12 molecules. METHODS : The partial least squares regression (PLSR) model, which models the relationship between predictions and responses and the structure of these variables, was applied to predict the density of a binder with molecule descriptors. The PLSR model could also analyze data with collinear, noisy, and multiple dimensional independent variables. The density and additive-free AAA1 binder’s molecule systems generated by an asphalt binder’s molecules-related study were used to fit the PLSR model with the molecular descriptors produced using alvaDesc software. In addition to developing the relationship, a systematic feature selection framework (i.e., the V-WSP- and PLSR-modelbased genetic algorithm (GA)) was applied to explore sets of predictors which contributed to predicting the physical property. RESULTS : The PLSR model accurately predicted the density for the AAA1 binder’s molecules using the condition of the temperature and aging level (R2 was 0.9537, RMSE was 0.00424, and MAP was 0.00323 for the test data) and provided a set of features which correlated well to the property. CONCLUSIONS : Through the establishment of the physical property prediction model, it was possible to evaluate the physical properties of construction materials without limited experiments or simulations, and it could be used to comprehensively design the modified material composition.
We examine a single machine scheduling problem with step-improving jobs in which job processing times decrease step-wisely over time according to their starting times. The objective is to minimize total completion time which is defined as the sum of completion times of jobs. The total completion time is frequently considered as an objective because it is highly related to the total time spent by jobs in the system as well as work-in-progress. Many applications of this problem can be observed in the real world such as data gathering networks, system upgrades or technological shock, and production lines operated with part-time workers in each shift. Our goal is to develop a scheduling algorithm that can provide an optimal solution. For this, we present an efficient branch and bound algorithm with an assignment-based node design and tight lower bounds that can prune branch and bound nodes at early stages and accordingly reduce the computation time. In numerical experiments well designed to consider various scenarios, it is shown that the proposed algorithm outperforms the existing method and can solve practical problems within reasonable computation time.
As environmental concerns escalate, the increase in recycling of aluminum scrap is notable within the aluminum alloy production sector. Precise control of essential components such as Al, Cu, and Si is crucial in aluminum alloy production. However, recycled metal products comprise various metal components, leading to inherent uncertainty in component concentrations. Thus, meticulous determination of input quantities of recycled metal products is necessary to adjust the composition ratio of components. This study proposes a stable input determination heuristic algorithm considering the uncertainty arising from utilizing recycled metal products. The objective is to minimize total costs while satisfying the desired component ratio in aluminum manufacturing processes. The proposed algorithm is designed to handle increased complexity due to introduced uncertainty. Validation of the proposed heuristic algorithm's effectiveness is conducted by comparing its performance with an algorithm mimicking the input determination method used in the field. The proposed heuristic algorithm demonstrates superior results compared to the field-mimicking algorithm and is anticipated to serve as a useful tool for decision-making in realistic scenarios.
This paper aims to study the modeling and controller of an electrically driven tractor optimized for energy efficiency under off-road conditions and when subjected to loads such as plowing. The dynamic model design is aimed at a 30kW electric tractor. The vehicle model consists of a 30kW motor, transmission, wheels, and a controller, designed using the commercial software Matlab/Simulink. In order to optimize energy efficiency under load conditions, this paper designs and implements a PID controller focusing on the vehicle's speed and wheel slip. The newly proposed electric tractor modeling and PID controller aim to demonstrate improved energy efficiency through simulation.
본 연구는 소량 다품종의 화학물질을 다루는 연구실의 안전관리를 강화하기 위해 전과정관리 체계 알고리즘을 제안하는데 그 목적이 있다. 이를 위해 최근 10년간의 연구실 사고 사례, 관련 법규, 선행 연구 및 FGI (Focus Group Interview) 연구실 현황 분석을 통해 요구사항을 도출하고 전과정 관리체계를 개발하였으며, 이를 기반으로 전과정관리체계 알고리즘을 설계, 개발하여 연구실에 적용 및 검증하였다. 연구실 화학물질 사고 예방을 위한 안전관리는 우선 연구실 내 화학물질의 종류와 양을 정확히 파악하는 것부터 시작해야 한다. 이를 위해 화학물질관리의 전 과정을 단계별로 나누어 관리체계를 수립하고, 각 단계에서 활용되는 물질 정보, 법규 정보, 화학물질 성상별 분리 정보를 다루는 데이터베이스 항목 추출 및 알고리즘 개발 방안을 제시하였다. 본 알고리즘을 세 개의 기관에서 적용한 결과, 사고 예방 및 법규 준수 측면에서 높은 효과를 보인 것으로 평가되었으나 사고 발생률에 미치는 유의한 영향에 대해 알기 위해서는 더 많은 적용 연구가 필요하다. 본 연구에서 개발한 전과정관리체계 알고리즘의 활용은 실험실 안전과 사회적 안전을 도모하는 동시에 기업의 ESG 경영의 중요한 요소 중 하나인 기업활동의 리스크 관리와 책임경영에 도움이 될 것으로 기대한다.
In this study, we propose an optimal design method by applying the Prefabricated Buckling Restrained Brace (PF-BRB) to structures with asymmetrically rigidity plan. As a result of the PF-BRB optimal design of a structure with an asymmetrically rigidity plan, it can be seen that the reduction effect of dynamic response is greater in the case of arrangement considering the asymmetric distribution of stiffness (Asym) than in the case of arrangement in the form of a symmetric distribution (Sym), especially It was confirmed that at an eccentricity rate of 20%, the total amount of reinforced PF-BRBs was also small. As a result of analyzing the dynamic response characteristics according to the change in eccentricity of the asymmetrically rigidity plan, the distribution of the reinforced PF-BRB showed that the larger the eccentricity, the greater the amount of damper distribution around the eccentric position. Additionally, when comparing the analysis models with an eccentricity rate of 20% and an eccentricity rate of 12%, the response reduction ratio of the 20% eccentricity rate was found to be large.
부유식 해상태양광 설비는 패널 지지를 위한 프레임 구조물, 구조체의 부력 제공을 위한 부유체와 전체 시스템의 거동을 제한하는 계류시설로 구성되어 있다. 계류시설은 구조물의 지지조건으로서의 역 할을 통해 안정적인 발전량 수급에 기여한다. 하지만 해당 시스템은 설치된 해상환경 특성상 계류선의 파단 및 손상 시 직접적인 탐지가 불가능해 유지관리에 어려움이 있다. 따라서 본 연구에서는 패널지 지 프레임 구조체에 가속도 센서 부착을 가정하여, 해당 센서 계측값을 토대로 계류설비에서 발생한 파단 및 손상이 발생한 위치를 추정하는 알고리즘을 개발하였다. 알고리즘은 비지도학습 인공지능의 일종인 오토인코더를 활용하여 가속도 계측값의 재현 과정을 통해 정상상태의 구조 응답을 학습한 모 델이 비정상상태의 계측값을 재현 시 발생한 오차를 통해 손상 발생 여부와 위치를 실시간 탐지하도 록 구성하였다. 정상상태 구조응답을 기반으로 한 모델의 학습을 위해 패널지지 구조체를 10x10 격자 형으로 결합한 다중 결합 시스템에 불규칙파랑을 환경하중으로 적용함을 통해 발생한 6자유도 가속도 데이터를 확보하였다. 계류시설의 손상 발생 시 주된 변화 인자 탐지를 위해 상관성 분석과 민감도 분 석을 실시하여 손상 위치 추정 알고리즘에 적용할 주요 인자를 선별하여 학습 및 추정 성능에 대한 비교 분석을 수행하였다. 구축된 알고리즘의 테스트를 위해 총 5개 종 손상 케이스 데이터셋을 구축하 여 손상 위치 추정 성능을 비교하였다. 본 연구를 통해 계류 시설에 발생한 손상 여부 및 위치를 추정 하여 부유식 해상태양광 설비의 선제적 유지관리에 기여할 수 있을 것으로 기대된다.
This study utilized text mining analysis to identify keywords used in the research of gray mold (Botrytis cinerea), taking into account horticultural crops, environmental or physical treatments, and chemical or material factors. Data spanning from 1980 to 2021 was gathered from ScienceON and interpreted using word cloud visualization analysis following post-processing. Morphological analysis and coding were conducted using the text mining packages library tm provided by the R program. Our review of B. cinerea included and analyzed 7,342 papers. Among the extracted words, those related to crops and ranking in the top 10 were tomato, strawberry, grape, apple, cucumber, bean, kiwifruit, rose, pepper, and pear. roses were the only flower in the top 10 horticultural crops. Research has explored environmental or physical treatment factors such as storage, temperature, cold, seasons, humidity, heat/hot UV-C, sprays, films, and coatings. Chemical or material words included fungicide, chitosan, ethylene, oil, ROS, ABA, VOC, glucose, carbon, and ethanol.
The present research focuses on the tribological behavior of the AA5083 alloy-based hybrid surface composite using aluminosilicate and multi-walled-carbon nanotube through friction stir processing for automotive applications. The friction stir processing parameters (tool rotation and traverse speed) are varied based on full factorial design to understand their influence on the tribological characteristics of the developed hybrid composite. The surface morphology and composition of the worn hybrid composite are examined using a field-emission scanning electron microscope and an energy-dispersive x-ray spectroscope. No synergistic interaction is observed between the wear rate and friction coefficient of the hybrid composite plate. Also, adhesive wear is the major wear mechanism in both base material and hybrid composite. The influence of friction stir process parameters on wear rate and the friction coefficient is analyzed using the hybrid polynomial and multi-quadratic radial basis function. The models are utilized to optimize the friction stir processing parameters for reducing the rate of wear and friction coefficient using multi-quadratic RBF algorithm optimization.
With the recent surge in YouTube usage, there has been a proliferation of user-generated videos where individuals evaluate cosmetics. Consequently, many companies are increasingly utilizing evaluation videos for their product marketing and market research. However, a notable drawback is the manual classification of these product review videos incurring significant costs and time. Therefore, this paper proposes a deep learning-based cosmetics search algorithm to automate this task. The algorithm consists of two networks: One for detecting candidates in images using shape features such as circles, rectangles, etc and Another for filtering and categorizing these candidates. The reason for choosing a Two-Stage architecture over One-Stage is that, in videos containing background scenes, it is more robust to first detect cosmetic candidates before classifying them as specific objects. Although Two-Stage structures are generally known to outperform One-Stage structures in terms of model architecture, this study opts for Two-Stage to address issues related to the acquisition of training and validation data that arise when using One-Stage. Acquiring data for the algorithm that detects cosmetic candidates based on shape and the algorithm that classifies candidates into specific objects is cost-effective, ensuring the overall robustness of the algorithm.
Efficiently detecting the nearest navigational dangers in Electronic Chart Display and Information Systems (ECDIS) remains pivotal for maritime safety. However, the software implementation of ADMAR(Automatic Distance measurement and Ranging) functionality faced challenges, necessitating extensive computations across ENC cells and impacting real-time performance. To address this, we present a novel method employing dynamic programming. Our proposed algorithm strategically organizes nodes into a tree structure, optimizing the search process towards nodes likely to contain navigational hazards. Implementation of this method resulted in a notable sevenfold reduction in computation time compared to the conventional Brute Force approach. Our study established a direct correlation between the ADMAR functionality and node count, achieving error margins deemed acceptable for practical navigation scenarios. Despite this theoretical progress, minor errors in results prompt further refinement. Consequently, future iterations will explore varying values for N, considering hierarchy and cell sizes to enhance algorithmic precision. This research signifies a potential advancement in optimizing navigational danger detection within ECDIS, offering a promising avenue for improved efficiency. By introducing a dynamic programming-based approach, we have streamlined the detection process while acknowledging the scope for algorithmic refinement in subsequent studies. Our findings underline the feasibility of employing dynamic programming to enhance navigational danger detection, emphasizing its potential in ensuring maritime safety. This work lays a foundation for future research endeavors, aiming to fine-tune algorithms and advance navigational safety measures in ECDIS.
자기공명(magnetic resonance, MR)영상에서 주로 발생하는 Rician 노이즈는 영상의 화질을 저하하는 주요 요소 중의 하나이다. 본 연구에서는 노이즈 제거에 효율적이라고 잘 알려진 총변이(total variation, TV) 알고리즘을 모 델링하여 Rician 노이즈 레벨에 따른 파라미터를 최적화하고자 한다. 시스템은 8채널 기반의 3.0 T 장치를 활용하였 고 물 팬텀 영상을 획득하여 각각 Rician 노이즈를 0.05, 0.10, 0.15, 그리고 0.20 값을 부가하였다. TV 알고리즘 은 Rudin-Osher-Fatemi 모델을 기반으로 모델링하였고 최적화를 수행하기 위하여 반복수 파라미터를 조정하여 획득된 영상에 적용하였다. 결과적으로 Rician 노이즈 레벨을 0.05, 0.10, 0.15, 그리고 0.20을 사용하였을 때 각 각 30, 40, 80, 그리고 120 반복수를 기반으로 한 TV 노이즈 알고리즘에서 가장 우수한 신호 대 잡음비(signal to noise ratio, SNR)와 대조도 대 잡음비(contrast to noise ratio, CNR) 결괏값이 도출되었다. 또한, 최적화된 반복수를 적용한 TV 알고리즘을 사용한 MR 영상에서 기존의 위너 및 중간값 필터를 사용하였을 때 비하여 SNR과 CNR 모두 우수한 값을 획득할 수 있었다. 특히 기본적으로 획득된 MR 영상보다 최적화된 TV 알고리즘을 적용한 영상의 평균 SNR과 CNR은 각각 3.11 및 3.31배 향상됨이 증명되었다. 결론적으로, 노이즈 제거 효율이 우수한 TV 알고리즘의 최적화된 파라미터를 활용한다면 MR 영상에서의 활용 가능성이 클 것으로 기대한다.
본 논문에서는 시멘트에 탄소나노튜브를 혼입하여 전기 전도성을 향상시킨 복합재료의 압저항 특성을 딥러닝 기반 트랜스포머 알 고리즘을 적용하여 분석하였다. 훈련 데이터 확보를 위한 실험수행을 병행하였으며, 기존 연구문헌을 참조하여 배합설정, 시편제작, 화학조성 분석, 압저항 성능측정 실험을 수행하였다. 특히 본 연구에서는 탄소나노튜브 혼입 시편뿐 아니라 플라이애시를 바인더 대 비 50% 대체한 시편에 대한 제작 및 성능평가를 함께 수행하여, 전도성 시멘트 복합재료의 압저항 특성 향상 가능성을 탐구하였다. 실 험결과, 플라이애시 대체 바인더의 경우 보다 안정적인 압저항 특성결과가 관찰되었으며, 측정된 데이터의 80%를 이용하여 트랜스 포머 모델을 훈련시키고 나머지 20%를 통해 검증하였다. 해석 결과는 실험적 측정과 대체로 부합하였으며, 평균 절대 오차 및 평균 제 곱근 오차는 각각 0.069~0.074와 0.124~0.132을 나타내었다.
본 논문에서는 다양한 분야에 적용할 수 있는 자동화 동시 인상 시스템을 3D 콘크리트 프린팅에 적용하여 동시 인상이 가능한 3D 콘크리트 프린팅 시스템으로 개발하였다. 개발된 시스템은 3D 콘크리트 프린팅 작업 중 측정되는 인상량을 피어슨 상관계수를 통해 분석하고, 유압시스템을 사분위수 기법으로 실시간 모니터링하여 안전하고 정밀한 인상이 가능하다. 이를 활용하면 3D 콘크리트 프 린팅 구조물의 출력 품질을 확보함과 동시에 3D 콘크리트 프린팅의 규모보다 큰 구조물을 출력할 수 있다. 시스템의 성능을 평가하기 위해 기존의 3D 콘크리트 프린팅과 동시 인상이 가능한 3D 콘크리트 프린팅을 각각 이용하여 시편을 출력하였다. 출력된 시편은 3D 스캐너를 활용하여 측정하였다. 스캔한 시편의 층별 직경과 시편의 교차각을 측정하였으며, 분석을 통해 동시 인상이 가능한 3D 콘크 리트 프린팅의 성능을 검증하였다.
본 연구는 콰욜라 작품에서 컴퓨터 알고리즘 기술이 주체로서, 인간이 재현한 이미지를 디지털 이미지로 재창조하는 데서 발생한 숭고적 의미와 특성을 고찰한다. 그리고 이를 통해 콰욜라 작품이 인간중심성을 비판적으로 성찰한다는 점을 살펴본다. 숭고에서 주체는 변형 되고 비결정화되어 이전과 다른 창조적 자아로 거듭난다. 숭고에서 주체의 이런 양상은 주체 로서 알고리즘 기술이 대상에 야기하는 현상과 유사하다. 알고리즘 기술은 대상을 데이터화 함으로써 대상에 창조적 잠재력을 준다. 데이터로서 비결정화 된 대상은 다른 존재들로 다시 변형되어 이전과 불일치할 가능성을 갖기 때문이다. ≪포로들 #B06 Captives #B06≫ (2014)과 ≪유적: 프로방스 Remains: Provance≫(2016)에서 알고리즘 기술은 대상을 변 형, 비결정화 하고 이전과 불일치하게 만들어 대상에 창조적 잠재력과 숭고적 특성을 준다. 그래서 인간 시각에 대한 차이를 발생시켜 인간 시각과 근본적으로 같지만 다른 형태를 지 니는 기계의 시각을 제시한다. 그리하여 알고리즘 기술은 인간이 기계의 시각을 통해 자신에 대한 메타적 보기를 가능케 한다.
This paper proposes an algorithm for the Unrelated Parallel Machine Scheduling Problem(UPMSP) without setup times, aiming to minimize total tardiness. As an NP-hard problem, the UPMSP is hard to get an optimal solution. Consequently, practical scenarios are solved by relying on operator's experiences or simple heuristic approaches. The proposed algorithm has adapted two methods: a policy network method, based on Transformer to compute the correlation between individual jobs and machines, and another method to train the network with a reinforcement learning algorithm based on the REINFORCE with Baseline algorithm. The proposed algorithm was evaluated on randomly generated problems and the results were compared with those obtained using CPLEX, as well as three scheduling algorithms. This paper confirms that the proposed algorithm outperforms the comparison algorithms, as evidenced by the test results.