검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 756

        181.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nonlinear analysis for seismic performance evaluation of existing building usually takes 4~5 times more than linear analysis based on KBC code. To obtain accurate results from the nonlinear analysis, there are a lot of things to be considered for nonlinear analysis modeling. For example, reinforcing layout, applied load and seismic details affect behavior of structural members for the existing building. Engineer-oriented computerized system was developed for engineers to evaluate effective seismic performance of existing buildings with abiding by seismic design principles. Using the engineer-oriented program, seismic performance evaluation of reinforced concrete building was performed. Nonlinear hinge properties were applied with real time multiple consideration such as section layout, section analysis result, applied load and performance levels. As a result, the building was evaluated to satisfy LS(Life Safety) performance level. A comparison between engineer-oriented and program-oriented results is presented to show how important the role of structural engineer is for seismic performance evaluation of existing buildings.
        4,000원
        182.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Seismic design of braced frames that simultaneously considers economic issues and structural performance represents a rather complicated engineering problem, and therefore, a systematic and well-established methodology is needed. This study proposes a multi-objective seismic design method for an inverted V-braced frame with suspended zipper struts that uses the non-dominated sorting genetic algorithm-II(NSGA-II). The structural weight and the maximum inter-story drift ratio as the objective functions are simultaneously minimized to optimize the cost and seismic performance of the structure. To investigate which of strength- and performance-based design criteria for braced frames is the critical design condition, the constraint conditions on the two design methods are simultaneously considered (i.e. the constraint conditions based on the strength and plastic deformation of members). The linear static analysis method and the nonlinear static analysis method are adopted to check the strength- and plastic deformation-based design constraints, respectively. The proposed optimal method are applied to three- and six-story steel frame examples, and the solutions improved for the considered objective functions were found.
        4,000원
        183.
        2016.12 구독 인증기관 무료, 개인회원 유료
        4,000원
        184.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This research describes the impact of vertical earthquake components on the performance of typical non-ductile bridges. To achieve this goal, this research chooses a non-seismically designed reinforced concrete bridge typically found in the California area. Particularly, their columns with inadequate design have a higher possibility of shear failure. To consider this failure, the column model reflects shear-axial interaction effect and is verified by comparing simulated results and experimental data available in literature. Two computational bridge models having column shear model subjected to constant and varying axial load are then built to conduct inelastic dynamic analyses. The responses are employed to construct probabilistic seismic demand models for two bridge models. This results indicate that the consideration of shear-axial interaction effect increases the seismic demand of all bridge components in non-ductile bridges, resulting in their increased seismic vulnerability.
        4,000원
        185.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recent decades, maintenance and reconstruction have been paid attention to old buildings. Especially, it has been recognized that seismic retrofit measures are necessary for non-reinforced masonry buildings which are used for prevailing building constructions. However, such applications can be limited due to its excessive costs, long-period, and inherent difficulty in securing construction spaces. For this reason, different reinforcement methods have been proposed by previous researchers in the economic manner. This study carried out an adhesive retrofit material upgrading low workability and excessive costs of existing reinforcement methods and, in turn, verified the level of seismic reinforcement throughout experimental studies. In order for the objectives, masonry walls with an aspect ratio of 1.0 were designed and manufactured. Also, effective parameters which are affected by openings, adhesive material types, the number of reinforcement layers, and lateral load levels were established. Experimental results showed that MW specimens without openings were collapsed for low-seismic resistances resulting from rocking failure modes, while strength and displacement capacities were improved for reinforced openings. Also, R-MWO-3F specimens with opening which was enhanced for three layers of stiffener showed displacement, ductility capacities, and energy dissipating capacities in the stable manner, even satisfying the collapse prevention level proposed in the current seismic codes.
        4,000원
        186.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This report offers an economically reasonable seismic reinforcement to non-seismic mid/low reinforced concrete structures. Installed a slit in between the reinforced concrete frame and masonry infilled wall then inserted twist bar to prevent inversion and attached to the lower/upper beam. Confirmed the seismic reinforcement effect through static loading test. Total of 4 specimens were produced for the test, a masonry infilled wall without seismic reinforcement and with seismic slit or twist bar applied. As a result, applying the seismic slit and twisted bar was economically reasonable and seismic reinforcement effect was confirmed by showing stable failure, increase of maximum strength and yield displacement, increase of accumulated energy dissipation.
        4,000원
        187.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        After the Gyeong-ju 9.12 earthquake, we found the necessity of seismic design of nonstructural element is important to reduce damages in view of properties and economic losses. This study focused on the investigation of damages including both properties and human beings. It was found that most of the damages are leaking of water pipe line, rupture of glasses, spalling of roof finishing, cracks of building, and falling from roof. It was also found that the seismic design force of nonstructural elements is taking account into the natural periods, amplification factors, response modification factors to forsee inelastic behaviors. From this studies, it is recommended that more studies are necessary on the seismic design force of nonstructural element.
        4,000원
        188.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        After an earthquake occurred in the Gyeongju, 2016, many low-story buildings have been questioned in terms of the seismic performance since mostly they have been exempted from the seismic design requirement since 1988. In this study, a 3-story moment resisting frame (MRF) building was analyzed and evaluated the seismic performance. Due to the insufficient seismic performance required for the seismic performance levels, three different seismic retrofit schemes were proposed and their seismic performances were re-evaluated. While steel brace and open shear wall retrofit systems mainly focused on the strength retrofit, the VES damper retrofit system is mainly to enhance the energy dissipation capacity of the system and resultes in the increased ductility. The original building and 3 retrofitted buildings were evaluated using the nonlinear static and nonlinear dynamic analyses and suggestions were proposed. Through the analysis of nonlinear time history and push-over using MIDAS/Gen program, damages of the building in terms of top story and average story drift and effect of reinforcement were analyzed.
        4,000원
        189.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper investigates seismic performance of a small-sized single story building in Korea. Nonlinear pushover anlaysis is performed to verify shear failure of RC short columns eventually led to performance degradation. Also, nonlinear time history analysis is performed using the same earthquakes from Gyeongju. Similar failure mode was obtained as in the report where a sudden rupture of the RC columns happened.
        4,000원
        190.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper investigates seismic damage potential of recent September 12 M5.8 Gyeongju earthquake from diverse earthquake engineering perspectives using the accelerograms recorded at three stations near the epicenter. In time domain, strong motion durations are evaluated based on the accelerograms and compared with statistical averages of the ground motions with similar magnitude, epicentral distance and soil conditions, while Fourier analysis using FFT is performed to identify damaging frequency contents contained in the earthquake. Effective peak ground accelerations are evaluated from the calculated response spectra and compared with apparent peak ground accelerations and the design spectrum in KBC 2016. All these results are used to consistently explain the reason why most of seismic damage in the earthquake was concentrated on low-rise stiff buildings but not quite significant. In order to comparatively appraise the damage potential, the constant ductility spectrum constructed from the Gyeongju earthquake is compared with that of the well-known 1940 El Centro earthquake. Deconvolution analysis by using one accelerogram speculated to be recorded at a stiff soil site is also performed to estimate the soil profile conforming to the response spectrum characteristics. Finally, response history analysis for 39- and 61-story tall buildings is performed as a case study to explain significant building vibration felt on the upper floors of some tall buildings in Busan area during the Gyeongju earthquake. Seismic design and retrofit implications of M5.8 Gyeongju earthquake are summarized for further research efforts and improvements of relevant practice.
        4,000원
        191.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, some popular intensity measures of earthquakes including magnitude, MMI, and PGA as well as their empirical relationships are briefly reviewed since they have been widely used without prudence by mass media, the public, and even the government when asking or expressing the seismic capacity of buildings. The basic concept of current seismic design is also presented in order to facilitate relevant discussions. It is emphasized that expressing the building seismic capacity simplistically in terms of seismological quantities or terminologies like magnitude and MMI is inherently irrational, may be misleading the stakeholders, and should be avoided. Alternative expressions, more rational and consistent with current seismic design philosophy and practice, are recommended.
        4,000원
        192.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Secure operation of hospitals during and right after earthquake is essential. Past lessons from earthquake damages have shown that most of the injured and the death occurred within 30 minutes after earthquake and the portion of nonstructural damage has become significant. However, hospital buildings in Korea have not prepared fully to address such rising issues. This paper is to study what type of damage patterns are related to hospital buildings and how to develop a preparedness plan to keep hospitals operational at all earthquakes if possible. This paper first reviews on past earthquake damages reported as critical to hospital buildings while classifying them into four groups: (1) structural element; (2) architectural-nostructural element; (3) medical equipments and contents; and (4) utility facility. Upon such classification, some detailed concerns can be specified under each group explicitly. Then a hierarchy for hospital building is also developed for the classified groups, which enables us to identify required things for the enhancement of seismic performance of hospital building that consists of heterogeneous elements. To upgrade the level of seismic performance for existing hospital buildings, the concept of performance-based approach can be adopted to address the heterogeneous problems in a systematic and stepwise manner. Finally a conceptual framework for the seismic risk assessment for hospital building is proposed toward the seismic enhancement of hospital buildings using performance-based approach.
        4,000원
        193.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, effectiveness of seismic retrofitting methods using passive damping devices was investigated through numerical analyses of short-period structures under earthquakes which have short-duration and high-frequency impulse characteristics similar to Geyongju earthquakes. Displacement spectra of elastic systems and ductility demand of inelastic systems were evaluated by increasing viscous or friction damping. The damping devices could reduce responses of the structures with shorter structural period than 0.2s. The earthquakes similar to impulse load did not induce the responses of the structures with longer period than 0.4s, and the effects of the damping devices which generates damping forces proportional to structural responses became insignificant.
        4,000원
        194.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, seismic performance assessment has been examined for a mid-rise RC building subjected to 2016 Gyeongju earthquake occurred in Korea. For the purpose of the paper, 2D external and internal frames in each direction of the building have been employed in the present comparative analyses. Nonlinear static pushover analyses have been conducted to estimate frame capacities. Nonlinear dynamic time-history analyses have also been carried out to examine demands for the frames subjected to ground motions recorded at stations in near of Gyeongju and a previous earthquake ground motion. Analytical predictions demonstrate that maximum demands are significantly affected by characteristics of both spectral acceleration response and spectrum intensity over a wide range of periods. Further damage potential of the frames has been evaluated in terms of fragility analyses using the same ground motions. Fragility results reveal that the ground motion characteristics of the Gyeongju earthquake have little influence on the seismic demand and fragility of frames.
        4,200원
        196.
        2016.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In regions of low-to-moderate seismicity, various types of lap splices are used for longitudinal reinforcement of columns at the plastic hinge zones. The seismic performance of such lap spliced columns, such as strength, deformation capacity, and energy dissipation, is affected by material strengths, longitudinal re-bar size, confinement of hoops, lap splice location, and lap splice length. In the present study, cyclic loading tests were performed for columns using three types of lap splices (bottom offset bar splice, top offset bar splice, and splice without offset bend). Lap splice length(40db and 50db) was also considered as test parameters. Ties with 90-degree end hooks were provided in the lap splice length. The test results showed that strength, deformation capacity, and energy dissipation of columns significantly differed depending on the details and the length of lap splices. The bottom offset bar splice showed high ductility and energy dissipation but low strength; on the other hand, the top offset bar splice and the splice without offset bend showed high strength but moderate ductility and energy dissipation.
        4,000원
        197.
        2016.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        1970년대 이후 한국의 빠른 경제성장 동안에 수로나 철도 등 많은 지중구조물들이 건설되었다. 1988년에 내진설계가 의무 화되었으나, 1988년 이전의 지중 구조물들은 내진설계가 반영되지 않았다. 따라서, 이러한 지중 구조물들은 지진이 일어났을 때 안전성을 확보하기 위해 효과적인 내진 보강방법이 필요하다. 그러한 이유로, 본 연구에서는 새롭게 개발된 보강재를 이 용한 RC 박스 지중 구조물 우각부 보강공법의 내진성능에 대하여 분석하였다. 이 공법은 박스구조물 우각부에 Pre-flexed member를 설치하여 외력에 저항력을 증대시키는 원리이다. 타당성을 검증하기 위해서 새로이 개발된 보강재와 기존의 보강 재를 실험과 유한요소해석으로 비교하였다. 유한요소모델에서 강재의 비선형 모델은 J2 Plasticity Model을 기초로 하고 콘 크리트는 CEB-FIP MODEL CODE 1990로 모델링되었다. 또한, 설계반영을 위한 박스 구조물과 보강재와의 합성률을 산정 하였다. 보강재와 박스구조물은 Tie에 의해 완전 부착된 상태의 연결조건 하에서 해석이 수행되었으며, 하중-변위곡선에서 실험과 유한요소해석의 결과가 서로 일치하였다.
        4,000원
        198.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Currently, researches are being actively conducted in assessing seismic performance of nuclear facilities in USA and Europe. In particular, applying this technique of assessing seismic performance to design of isolation systems in nuclear power plants is being performed and then ASCE 4 Draft (2013) is being revised accordingly in the United States. In order to satisfy the probabilistic performance objectives described by seismic responses with certain confidence levels (ASCE 43, 2005), the probability distributions of these responses have to be defined. What is the minimum number of input ground-motions to obtain the probability distribution precise enough to represent the unknown actual distribution? Theoretical basis, for how to determine the minimum number of input ground-motions for given a logarithmic standard deviation to approximate the unknown actual median of the log-normal distribution within a range of error at a certain level of confidence, is introduced by Huang et al. (2008). However, the relationship between the level of confidence and the range of error is not stated in the previous study. In this paper, based on careful reviews on the previous work, the relationship between the level of confidence and the range of error is logically and explicitly stated. Furthermore, this relationship is also applied to derive the minimum number of input ground-motions in order to approximate the unknown actual logarithmic standard deviation. Several recommendations are made for determining the minimum number of input ground-motions in probabilistic assessment on seismic performance of facilities in nuclear power plants.
        4,000원
        199.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Unreinforced masonry (URM) buildings are known to be highly vulnerable to seismic loadings. Although significant physical variation may exist for URM buildings that fall into a same structural category, a single set of fragility curves is typically used as a representation of the seismic vulnerability of the URM structures. This study investigates the effect of physical variation of URM structures on their seismic performance level. Variables that describe the physical variation of the structure are defined based on the inventory analysis. Seismic behavior of the structures is then monitored by changing the variables to investigate the effect of each variable. The analysis results show that among the variables considered the seismic performance of URM building depends on the variation of the width, the aspect ratio, and the number of story. The need for further research on the modeling of the connections between the walls and diaphragms and the torsional effect is also addressed.
        4,000원
        200.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Seismic performance evaluation of existing building usually needs much time and man power, especially in case of nonlinear analysis. Many data interaction steps for model transfer are needed and engineers should spend much time with simple works like data entry. Those time-consuming steps could be reduced by applying computerized and automated modules. In this study, computational platform for seismic performance evaluation was made with several computerized modules. StrAuto and floor load transfer module offers a path that can transfer most linear model data to nonlinear analysis model so that engineers can avoid a lot of repetitive work for input information for the nonlinear analysis model. And the new nonlinear property generator also helps to get the nonlinear data easily by importing data from structural design program. To evaluate the effect of developed modules on each stages, seismic performance evaluation of example building was carried out and the lead time was used for the quantitative evaluation.
        4,000원