검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 253

        181.
        2015.03 KCI 등재 서비스 종료(열람 제한)
        Population growth and increasing consumption of resources in the process of the industrial development has caused environmental pollution, climate change, and resource exhaustion. Therefore 'sustainable development' has become the important issue for the future. The sustainable development aims at effective resource use, less environmental impacts, and higher social security. Generally the rural area including agricultural fields and forest has various and plentiful natural resources which could make future development sustainable. To develop potential rural resources, the values for energy, environment and economy should be assessed considering the life-cycle of resources. The purposes of this study are to suggest the E3 (Energy, Environment, and Economy) assessment model for rural biomass considering life-cycle of resource and to apply the model to rice, the major agricultural product. As the results of this study, it turned out through E3 assessment that economic gain of rice cultivation is 578,374 won/10a, carbon absorption is 1,530kgCO2/10a, carbon emission is 926.65kgCO2/10a, and bio-energy potential of by-product is 394,028 kcal/10a. When E3 assessment was applied to by province, the results varied by regions because of the amount of input during cultivation. These results would be useful to realize the rural biomass and design regional resources plan in integrated E3 perspective.
        182.
        2014.12 KCI 등재 서비스 종료(열람 제한)
        Waste oil sludge was generated from waste oil purification process, oil bunker, or the ocean plant. Although it has high calorific values, it should be treated as a designated waste. During the recycling process of construction and demolition wastes or the trimming process of woods, a lot of sawdust is produced. In this study, the feasibility of BOF (biomass and waste oil sludge Fuel) as a source of renewable energy was estimated. To estimate combustion characteristics, a lab scale batch type combustion reactor was used and temperature fluctuation and the flue gas composition were measured for various experimental conditions. The results could be summarized as follows: the maximum CO2 concentration in the flue gas was increased with increasing waste oil sludge content in BOF. SO2 concentration in the flue gas was showed a tendency such as the highest CO2 concentration in the flue gas. With increasing waste oil sludge content in BOF, the combustion time was rather shorter although the increase of the CO2 concentration in the flue gas was delayed. Because the carbon conversion rate showed small difference with increasing the mixing ratio of waste oil sludge in BOF, BOF with the mixing ratio of waste oil sludge of 40% was effective for combustion. With decreasing the air/fuel ratio and the mixing ratio of waste oil sludge in BOF, activation energy and frequency factor were increased. The optimal air/fuel ratio for the combustion of BOF was 1.5.
        183.
        2014.12 KCI 등재 서비스 종료(열람 제한)
        Forest waste was interested as biomass to produce new renewable energy among various materials. To find appropriate conditions of the bio-ethanol production, acid hydrolysis and glucose fermentation experiments were conducted under various conditions. The acid-hydrolysis experiment results show that yield of glucose were increased as raise of temperature, acid concentration and reaction time. As a result, the optimal conditions for producing glucose from forest waste was under 110oC, 35%, and 100 min, respectively. The yield of glucose, which was generated from acid-hydrolysis experiment, was 2.419 mg/g·g from softwood and was 1.192 mg/g·g from hardwood. Also, it was investigated that acetic acid was more efficient than sulfuric acid for acid-hydrolysis process.
        184.
        2014.12 KCI 등재 서비스 종료(열람 제한)
        The large amount of waste oil sludge was generated from waste oil purification process, oil bunker, or the ocean plant. Although it has high calorific values, it should be treated as a designated waste. During the recycling process of construction and demolition wastes or the trimming process of woods, a lot of sawdust is produced. In this study, the feasibility of BOF (biomass and waste oil sludge fuel) as a renewable energy source was estimated. For manufacturing a BOF, a press type pelletizing was better than an extruder type and also 40 ~ 60% of mixing ratio in waste oil sludge was appropriate to produce a pellet. The pellet was 13 mm in diameter and 20 mm in length. There was no fixed carbon in waste oil sludge, and its carbon content and higher heating value were 63.90% and 9,110 kcal/kg, respectively. With an increse of mixing ratio of sawdust, the carbon content and heating value of the BOF were dropped, but fixed carbon content was increased. The heating value of BOF was in the range of 6,400 ~ 7,970 kcal/kg at the mixing ratio of 40 ~ 60% in waste oil sludge. It means that the BOF can be classified as the 1stgrade solid fuel. In TGA experiment carried out at heating rate of 10oC/min and under nitrogen atmosphere, thermal decomposition of sawdust was occurred in two steps, but waste oil sludge was destructed in one step. The initiated cracking temperature of sawdust and waste oil sludge was 300 and 280oC in respective and after 450oC the thermal decomposition process of sawdust was slowly progressed by 800oC in contrast to waste oil sludge. Thermal decomposition of waste oil sludge was finished around 600oC. It can be considered that this difference is due to the fixed carbon content. Thermal decomposition pattern for the pellet of mixing ratio over 50% in waste oil sludge was similar to that for waste oil sludge and thermal cracking was occurred between 300 and 350oC. As the mixing ratio of waste oil sludge in the pellet increased, the reaction of thermal cracking became fast.
        185.
        2014.12 KCI 등재 서비스 종료(열람 제한)
        This research estimates the necessity of a better governance plan on the purpose of fulfillment energy recovery by building resource recycling system for biomass resources and waste resources that derive from agricultural and mountain village areas. The utilization of new renewable energy technology which uses waste and biomass sources diverse as variety of resources, collecting method, operator etc. and is structurally complicated the formation of policy is also very difficult. There is failure because of the problems which occurs from the policy led by government. Biomass Town Development Project should be made through the central government and the local government integrated support system and should be formed a consultative group in order to process the project mutually with these two department including the experts from the related areas. This consultative group, while government organizations carry out the hub function of strategic knowledge management, should carry out the control tower function to be able to be net working transfer the information with the cooperation of private and government so vitalize the communication area among the related actors. And to be able to increase the participation rate of the local people the consistent and various educations should be given so a smooth business promotion progress will be desired through the change of perception and coactive participation of people.
        186.
        2014.11 서비스 종료(열람 제한)
        폐기물들을 통해 자원화 및 재생 가능한 원료를 활용하여 원료비용 및 처리에 따른 비용절감을 통해 폐기물 축적에 대한 환경영향을 줄이기 위한 방안을 모색할 필요가 있다. 그러나 현재 바이오매스 및 폐기물 각각의 원료에 대한 가스화 연구는 많이 수행되고 있으나 혼합원료에 대한 연구는 미비한 실정이다. 이에 본 연구에서는 바이오매스와 폐플라스틱을 혼합한 신연료(라디에타 소나무, 폴리에틸렌, 폴리프로필렌)를 이용한 촉매・혼합가스화를 통해 에너지원으로 활용하는 데 기초자료를 제공하고자 한다. 바이오매스와 폐플라스틱의 촉매・혼합가스화 특성을 살펴보기 위해 배치반응기를 이용하여 실험을 수행하였다. 반응온도는 700~900℃, 공기비는 0.2, 바이오매스에 대한 플라스틱의 혼합비는 20%, 40%로 하였고, 활성탄, 돌로마이트, 올리빈 촉매를 이용하여 최적의 반응조건을 도출하였다. 실험결과 바이오매스와 폐 폴리프로필렌 혼합시료는 반응온도가 증가할수록 Boudouard reaction, Water gas reaction 등의 영향으로 H2, CO, CH4 등의 조성비가 증가하여 가스의 발열량이 증가하였다. 촉매를 이용한 가스화반응에서는 돌로마이트를 사용할 경우 H2 생성율(34.03~35.58%)이 가장 높았고, 그 외 CO 26.70~27.52%, C2H2 0.29~0.34% C2H4 7.85~11.56%가 생성되었다. 활성탄 역시 H2생성에 영향을 주었으나 다양한 크기의 세공들을 이용하여 흡착을 통한 촉매역할을 하는 활성탄보다 돌로마이트의 CaO, MgO가 Carbon formation reaction을 활발하게 진행시켜 고분자 물질들이 촉매분해를 통해 H2생성이 활발하게 진행된 것으로 사료된다. 올리빈의 경우 돌로마이트나 활성탄에 비해 크게 합성가스 조성의 긍정적인 역할을 하지 못하였다.
        188.
        2014.07 KCI 등재 서비스 종료(열람 제한)
        A RPS (Renewable Portfolio Standard) for South Korea became effective in 2012 with a beginning renewable electricity quota of 2% of total generation of capacities exceeding 500 MW, increasing to 10% by 2022. However, almost of all the coal-fired power plant are not designed to co-firing large amount of biomass with coal. In practice, the biomass cofiring rate is commonly 5 -10% of total heat input. In the case of biomass import, it will cost a great deal on the transshipment, transportation and storage of biomass. Therefore new research and development on the biomass fuel with high energy density in needed to reduce logistics cost on transportation of the biomass fuel. Torrefaction is a thermochemical treatment process of biomass at temperatures ranging between 200 and 300oC. During this process, 70% of the mass is retained as a solid product, and retain 90% of the initial energy content. The physical and chemical properties of torrefied biomass are similar to those of coal. Therefore co-firing torrefied biomass could increase the co-firing percentages much further to even 40%. This review paper looks into the torrefaction technologies of biomass, the technical characteristic of torrefaction reactors, the overview of torrefaction project and the future prospects of torrefaction.
        189.
        2014.07 서비스 종료(열람 제한)
        Brassinosteroids (BRs) play important roles in many aspects of plant growth and development. BR-induced AtBEE3 (brassinosteroid enhanced expression 3) is required for a proper BR response in Arabidopsis. Here, we identified a poplar (Populus alba x P. glandulosa) BEE3 homolog encoding a putative basic helix-loop-helix (bHLH)-type transcription factor through microarray analysis. Transcripts of PagBEE3 were mainly detected in stems, with the internode having a low level of the transcripts and the node having a relatively higher level. The function of the PagBEE3 gene was investigated through the phenotypic analyses with PagBEE3-overexpressing (ox) transgenic lines. This work mainly focused on a potential role of PagBEE3 in stem growth and development of polar. The PagBEE3-ox poplar showed thicker and longer stems than wild-type plants. The xylem cells from the stems of PagBEE3-ox plants revealed remarkably enhanced proliferation, resulting in an earlier thickening growth than wild-type plants. Microarray analysis revealed that the expression of many genes involved in xylem cell proliferation and development was altered in the PagBEE3-ox plants. Therefore, this work suggests that xylem development of poplar is accelerated in PagBEE3-ox plants and PagBEE3 plays a role in the stem growth by increasing the proliferation of xylem cells to promote the initial thickening growth of poplar stems.
        190.
        2014.06 KCI 등재 서비스 종료(열람 제한)
        In this study we followed biofilm formation and development in a granular activated carbon (GAC) filter on pilot-scale during the 12 months of operation. GAC particles and water samples were sampled from four different depths (-5, -25, -50 and –90 cm from surface of GAC bed) and attached biomass were measured with adenosine tri-phosphate (ATP) analysis and heterotrophic plate count (HPC) method. The attached biomass accumulated rapidly on the GAC particles of top layer throughout all levels in the filter during the 160 days (BV 23,000) of operation and maintained a steady-state afterward. During steady-state, biomass (ATP and HPC) concentrations of top layer in the BAC filer were 2.1 μg·ATP/g·GAC and 3.3×108 cells/g·GAC, and 85%, 83% and 99% of the influent total biodegradable dissolved organic carbon (BDOCtotal), BDOCslow and BDOCrapid were removed, respectively. During steady-state process, biomass (ATP and HPC) concentrations of middle layer (-50 cm) and bottom layer (-90 cm) in the BAC filter were increased consistently. Biofilm development (growth rate) proceed highest rate in the top layer of filter (μATP = 0.73 day-1; μHPC = 1,74 day-1) and 78%∼87% slower in the bottom layer (μATP = 0.14 day-1; μHPC = 0.34 day-1). This study shows that the combination of different analytical methods allows detailed quantification of the microbiological activity in drinking water biofilter.
        191.
        2014.03 KCI 등재 서비스 종료(열람 제한)
        SCB액비 처리에 의한 포플러 클론들의 생육특성을 조사한 결과, 생존율은 처리구와 무처리구에서 각각 95.0%와 92.5%로 양호하게 나타났다. 포플러 클론들의 평균 줄기 수는 처리구 및 무처리구에서 각각 11.8개와 11.5개로 나타났으며, SCB액비 처리구에서 현사시 72-31, Bonghwa1 및 Clivus 클론이 각각 17.1개, 14.5개 및 13.8개로 우수하게 나타났다. 평균 엽면적은 처리구 및 무처리구에서 각각 71.0 cm2와 52.3 cm2로 나타나 처리구가 35% 높았다. 포플러 단벌기 맹아림의 연평균 지상부 바이오매스 생산량을 조사한 결과, 처리구 및 무처리구의 연평균 바이오매스 생산량은 각각 8.5 ton/ha와 5.6 ton/ha로 나타나 처리구가 51% 우수하였으며, SCB액비 처리구에서 현사시 Clivus, 72-31 및 Bonghwa1 클론이 각각 15.2 ton/ha, 14.0 ton/ha 및 11.6 ton/ha로 우수하였다.
        192.
        2014.01 KCI 등재 서비스 종료(열람 제한)
        Pyrolysis of biomass is the thermal decomposition of its carbohydrate structures into numerious hydrocarboncompounds, light gases and carbon-rich solid residue. Understanding the pyrolysis characteristics is essential asfundamental data for various thermo-chemical conversion of biomass. This study investigated slow pyrolysis of fourIndonesian biomass (sugarcane bagasse, cocopeat, palm kernel shell (PKS), umbrella tree) for a temperature range of300~600oC. With increase in temperature, all samples showed a decrease in the biochar yield as more compounds werereleased as vapors increasing the bio-oil and gas yields. The biochar became more carbon-rich with a carbon content of85% or higher at 500oC. However, the product yields and properties showed large variations between the samples.Cocopeat had the highest biochar yield, while wood and baggasse had the highest bio-oil yield. Despite the low massyields, the biochar of wood and bagasse had the best quality in terms of macro-pore and micro-pore development, whichis a key property for its applications as adsorbent, soil ameliorator, as well as fuel. The bio-oil did not have a sufficientlyhigh HHV for use as main fuel, but could be utilized through co-firing or slurry production with biochar. In the lightgases, CO and CO2 were dominant, but could be burned on-site to supply the heat required for pyrolysis.
        193.
        2013.12 KCI 등재 서비스 종료(열람 제한)
        시설재배지 토양에 녹비작물의 재배가 Biomass-C와 토양 양분의 변화에 미치는 영향을 평가하고자 pot(Ø10-cm)에 헤어리벳치, 호밀, 발랭이를 70일간 재배 후 식물체와 토양을 분리하여 분석한 결과가 다음과 같다. 녹비작물의 생육량은 호밀이 가장 많았으며, 질수흡수량은 헤어리벳치가 가장 높게 나타났다. 호밀 재배구가 토양의 인산함량은 가장 낮았으며, biomass C는 가장 높게 나타났다. 시험 후 토양의 질소함량과 식물체 질소 흡수량은 고도의 부의 상관을 보였다. T-N 함량은 헤어리벳치 시험구에서는 증가하였지만, 호밀과 바랭이 재배구에서는 감소하는 경향을 보였다. 이상의 결과를 요약해볼 때 시설재배지에서 가장 중요한 것이 토양의 염류집적(EC) 인데 시험 후 토양에서 대조구에 비해서 콩과인 헤어리벳치는 EC가 약간 증가했고 다른 무기성분은 큰 변화가 없으며, 화본과인 호밀은 EC와 다른 무기성분도 약간 감소하는 경향으로 시설연작재배지에서는 화본과 작물이 염류집적 경감을 위해서 유리하다
        194.
        2013.12 KCI 등재 서비스 종료(열람 제한)
        In order to obtain the optimal design of a char removal cyclone, the effect of the vortex finder height and inlet shapeon its performance are numerically carried out. The pressure drop and collection efficiency are calculated for four differentcyclones with different vortex finder heights and inlet shapes. To validate the present numerical process, the calculatedpressure drops for two types of cyclones are compared with experimental results and the results show a good agreementbetween experimental and numerical results. From the results, increasing the height of the vortex finder, the collectionefficiency is increased. As for cyclone inlet shapes, the tangential one is characterized by lower efficiency compared withthe volute counterpart. The current result can be used for the design of cyclones with high collection efficiency, especiallyfor removing tiny char which is generated during fast pyrolysis process of waste biomass.
        195.
        2013.12 KCI 등재 서비스 종료(열람 제한)
        In the present study, lab-scale fast pyrolysis reactor (1kg/hr) using lignocellulosic waste biomass was numerically modeledwith various reaction mechanism and the calculation results were compared. Three kinds of reaction mechanisms were appliedsuch as three-step mechanism, two-stage, semi global mechanism and Broido-Shafizadeh mechanism to simulate chemicalreactions in the fast pyrolysis reactor. The fast pyrolysis reactor was modeled as function of mass fraction and reactiontemperature following each reaction mechanism. Especially, the reaction temperature is one of important factors to determinebio-oil yield. Hence, in this study, reaction rates and yield of fast pyrolysis products were compared with varying reactiontemperature for the three kinds of reaction mechanism. The variation of reaction rate for two-stage, semi global mechanismand Broido-Shafizadeh mechanism showed very similar pattern but, three-step mechanism has different trend because theeffect of secondary reaction was missing. The yield of tar was increased before reaching maximum tar yield at 430oC and520oC for two-stage, semi global mechanism and Broido-Shafizadeh mechanism, respectively then decreased as temperaturerises more. But, the yield of tar was increased continuously for three-step mechanism as temperature rises. The yield of non-condensable gas and char was increased as temperature rises for three kinds of reaction mechanisms.
        196.
        2013.12 KCI 등재 서비스 종료(열람 제한)
        ‘목양’은 국립식량과학원 벼 육종연구진이 총체 사료용 벼 품종을 육성할 목적으로 2001년 하계에 SR24592-HB2319 를 모본으로 하고 신초형 IR73165-B-6-1-1을 부본으로 교배 하여 계통육종법으로 육성한 품종으로 2010년 12월 농작물 직무육성신품종선정위원회에서 국가목록등재품종으로 선정 됨과 동시에 ‘목양’으로 명명하였다. ‘목양’의 출수기는 보통 기 재배에서 8월 23일로 ‘녹양’보다 8일 정도 늦은 만생종이 다. ‘목양’은 도열병, 줄무늬잎마름병, 오갈병에는 ‘녹양’보다 강하지만, 흰잎마름병, 벼멸구에는 약한 편이다. ‘목양’은 ‘녹 양’보다 탈립에 강하고, 후기녹체성이 우수하였다. ‘목양’은 가소화양분총량(TDN) 함량이 높고 중성세제불용섬유소(NDF) 와 산성세제불용섬유소(ADF)가 낮았다. ‘목양’의 총체수량은 지역적응시험에서 2008년부터 2010년까지 평균 17.7 MT/ha 로 ‘녹양’보다 25% 증수하는 경향을 보였다. ‘목양’은 가소화 양분총량(TDN)은 59.5%였으며 ADF와 NDF가 낮아 상대적 사료가치가 ‘녹양’에 비해 높은 품종이다. ‘목양’의 정조 수량은 보통기 재배에서 5.59 MT/ha로 ‘녹 양’보다 16% 증수되었다. 재배적지는 중부 및 남부평야지 1 모작 지대이다.
        197.
        2013.11 서비스 종료(열람 제한)
        In the sustainable society, the recycling of resources should achieve the preservation of regional and global environment and should be coordinated with regional agricultural and industrial activities. Especially for waste biomass resources, it will be supplied or discharged by multiple industries as agriculture, forestry, fisheries, manufacturing, commerce and living, and will be demanded by multiple purposes as foods, supplements, feeds, fertilizers, industrial materials and fuels. Therefore, waste biomass flows connecting these supplies to demands will be extremely complex. In order to judge the effectiveness of introducing technologies for recycling, a comprehensive framework, which can estimate impacts of technologies on regional material cycles and regional and global environment, is need. For this purpose, we are developing a physical input-output table (PIOT) for describes complex material flows of waste biomass, water and their constituents (e.g. carbon, nitrogen and phosphorus) in a region by integration of quantity data. This PIOT sets not only industries but also activities on recycling, waste disposal and wastewater handling in detail as sectors. Import and export between regions, and emissions to environment are also set in the table. Applying content rates of carbon, nitrogen and phosphorus to mass flows of each item, elemental flows of those are accounted for estimating emission to water (as organic pollutant and nutrients) and atmosphere (as greenhouse gas) from the whole system. The energy consumed by activity in each sector is also accounted for estimating greenhouse gas emission. Another originality of this PIOT is that physical data obtained from relevant statistics will be directly integrated to values in the table. As a case study, we are surveying the waste biomass flow at the Kochi prefecture, Japan. Administrative information on industrial waste was acquired from the Kochi Prefecture and the Kochi City with their cooperation. For municipal waste, annual survey on municipal solid waste business by the ministry of the environment was used. For by-product, generation amount, sort, composition and usage of biomass waste were surveyed by hearing, sampling and questionnaire at recyclers of biomass waste. Amounts of generation, recycling and disposal of each biomass waste item, disposal method and municipality were built up from these reports and survey. Using above information, flows of each lot (the annual generation an item of waste from a source) of biomass waste from generation via treatment to disposal or reuse were compiled in the database and set into the PIOT. The current biomass PIOT for Kochi Prefecture is shown in Figure. This table shows weight of materials as wet basis. The 1.43 × 108 tons/year of total demand and the 1.34 × 108 tons/year of total supply were accounted at this time. The difference between demand and supply would mainly be resulted from unrecorded flows in our database, especially on supply of water from the waterworks and the natural water, and the biomass production. We will survey constituents of carbon and nutrients in materials and expand our PIOT to depict the substance flows of elements, in order to estimate quality and quantities of emissions.
        198.
        2013.11 서비스 종료(열람 제한)
        This study characterized PM and VOC emissions from cow dung combustion in a controlled experiment. Dung from grass-fed cows was dried and combusted using a dual cone calorimeter. Heat fluxes of 10, 25, and 50 kW/m² were applied. The concentrations of PM and VOCs were determined using a dust spectrometer and gas chromatography/mass spectrometry, respectively. PM and VOC emission factors were much higher for the lower heat flux, implying a fire ignition stage. When the heat flux was 50 kW/m², the CO₂ emission factor was highest and the PM and VOC emission factors were lowest. Particle concentrations were highest in the 0.23-0.3-μm size range at heat fluxes of 25 kW/m² and 50 kW/m². Various toxic VOCs including acetone, methyl ethyl ketone, benzene, and toluene were detected at high concentrations. Although PM and VOC emission factors at 50 kW/m² were lower, they were high enough to cause extremely high indoor air pollution. The characteristics of PM and VOC emissions from cow dung combustion indicated potential health effects of indoor air pollution in developing countries.
        199.
        2013.09 KCI 등재 서비스 종료(열람 제한)
        The following are the results from an evaluation of the combustion characteristics of biomass processed with lowtemperature carbonization and coal, and those of a blend of both. Differential thermo-gravimetric (DTG) analysis has revealed that the number of curves was reduced as a result of carbonization and that the fuel quality was improved due to the increase of initial temperature (IT). It was also confirmed that the carbonized samples consisting only of the biomass required less combustion time (tq), while samples blended with coal burned longer than the weighted average value. The combustion time of a blended sample was shorter at an carbonization temperature of 400oC than at 300oC, and the combustion stability was achieved due to a narrow range of change in the combustion characteristics. The reaction rate constant (k) of the samples blended with coal was found to be smaller for all blend ratios, when compared with that of the unblended samples (raw, carbonized biomass). The combustion reaction models that were applicable for the devolatilization-combustion zone were diffusion (D1, D3) and Reaction order (O3) models; diffusion (D1-D4) model was primarily employed in the char combustion zone. In summary, low-temperature carbonization contributed to minimizing the change in the combustion characteristics of the biomass/coal blend.
        200.
        2013.09 KCI 등재 서비스 종료(열람 제한)
        농업유래의 바이오매스 중 볏짚의 저장형태와 저장기간에 따른 수분함량 변화와 바이오매스의 화학적 성분 변화를분석함으로써 바이오에탄올 생산을 위한 원료의 최적 저장방법을 제시하고자 하였다. 주요 결과는 아래와 같다.1. 볏짚의 수분함량 변이를 측정한 결과 실내에서 보관한사각곤포 및 원형곤포는 약 20 ~ 25%의 수분함량을유지하였으며 실외에서 보관한 비가림 시설을 도입한사각곤포의 경우 20%이하의 낮은 수분함량을 확인하였다.2. 볏짚의 화학적 성분의 변이를 분석한 결과 실외보관곤포는 cellulose 및 hemicellulose의 함량이 큰 폭으로감소하였으나, 실내에서 보관한 곤포들은 비닐원형곤포를 제외한 나머지 집속형태에서는 오히려 성분의 함량의 증가를 확인하였다.3. 볏짚을 장기간 보관할 때에는 외부환경을 차단할 수있는 실내에서 보관하거나 부득이하게 실외에서 보관할 때 최소 비가림 시설을 도입하여 수분함량 및 화학적 성분의 감소를 최소화해야 바이오에탄올 생산을 위한 고품질의 원료로써 이용될 수 있을 것이다.