간 동적 조영검사에 사용하고 있는 VIBE 시퀀스의 고식적인 방법과 딥러닝 방법에 관한 선행된 연구가 부족하여 영상의 평가와 검사의 방향성 및 타당성을 제시하고자 한다. ACR 팬텀 실험은 30회 반복 실험하였고, 저 대조도 분해능 평가영역 에서 syngo.via View&Go를 이용하여 신호대잡음비와 대조대잡음비를 평가하였고, 공간분해능 평가영역에서 MATLAB 을 통해 신호강도의 높이와 반치폭으로 공간 분해능을 평가했다. 팬텀 실험을 기준으로 Matrix 352를 설정하여 30명의 환자 실험을 했다. 간 실질, 간 문맥, 내림 대동맥에서 대조대잡음비를 평가했고, 공간 분해능은 간 문맥, 내림 대동맥의 경계면을 평가했다. 결과 분석은 이원배치 분산 분석으로 진행하고, 사후 분석은 Duncan을 사용했다. 통계분석은 정량적 으로 p-value 0.05 미만으로 유의한 것으로 판단했다. 팬텀 실험의 신호대잡음비와 대조대잡음비 결과는 Matrix 416 이하에서 유의하였으며, 공간분해능 결과는 고식적인 방법 Matrix 352 이하, 딥러닝 방법 288 이하에서 평가할 수 없었 다. 환자 실험 결과는 신호대잡음비, 대조대잡음비, 공간분해능 모두 유의했다. 본 연구는 고식적인 방법보다 딥러닝 방법 이 영상은 더 향상되었고, 획득 시간은 평균 4초(22.4%)가 단축되었다. 딥러닝 방법에서 Matrix 352를 적용하였을 때 검사 시간의 감소로 재현성과 호흡에 의한 인공물 감소가 있었다. 이에 딥러닝 방법에서 Matrix size 적용의 방향성을 제시할 수 있었다.
Recently, the importance of impact-based forecasting has increased along with the socio-economic impact of severe weather have emerged. As news articles contain unconstructed information closely related to the people’s life, this study developed and evaluated a binary classification algorithm about snowfall damage information by using media articles text mining. We collected news articles during 2009 to 2021 which containing ‘heavy snow’ in its body context and labelled whether each article correspond to specific damage fields such as car accident. To develop a classifier, we proposed a probability-based classifier based on the ratio of the two conditional probabilities, which is defined as I/O Ratio in this study. During the construction process, we also adopted the n-gram approach to consider contextual meaning of each keyword. The accuracy of the classifier was 75%, supporting the possibility of application of news big data to the impact-based forecasting. We expect the performance of the classifier will be improve in the further research as the various training data is accumulated. The result of this study can be readily expanded by applying the same methodology to other disasters in the future. Furthermore, the result of this study can reduce social and economic damage of high impact weather by supporting the establishment of an integrated meteorological decision support system.
PURPOSES : In this study, we aimed to evaluate the transition temperature (Tt) of asphalt binders using molecular dynamics simulations, which can provide a more accurate assessment of the mechanical properties of a material at the molecular level and can be applied to material development and design. METHODS : Unlike conventional macro- or meso-level simulations, we utilized MD simulations to evaluate the Tg of asphalt binders based on material composition and aging degree as input variables. In this analysis, 11 temperatures ranging from 434 K to 233 K at 20 K intervals were utilized, and the bulk volume and density were calculated through MD simulations. RESULTS : The MD simulation successfully predicted the Tg of the asphalt binder, and the molecular-level properties and interactions determined in this study can be applied not only to material development but also to the determination of constitutive equations or contact models used in continuum mechanics or discrete element methods. The calculated Tg was slightly different depending on the aging of the asphalt binder; however, it was found to accurately reflect the transitional characteristics. CONCLUSIONS : This study demonstrated the potential of MD simulations as valuable tools for material development and design in the construction industry. The results indicate that the use of MD simulations can lead to more accurate and efficient material development and design by providing a more detailed understanding of material properties and interactions at the molecular level.
The Korea Atomic Energy Research Institute (KAERI) employs a methodology for evaluating the concentration of radionuclides, dividing them into volatile and non-volatile nuclides based on their characteristics, to ensure the permanent disposal of internally generated radioactive waste. Gamma spectroscopy enables the detection and radiation concentration determination of individual nuclides in samples containing multiple gamma-emitting nuclides. Due to the stochastic nature of radioactive decay, the generated radiation signal can interact with the detector faster than the detected signal processing time, causing dead time in the gamma spectroscopy process. Radioactive waste samples typically exhibit higher radiation levels than environmental samples, leading to long dead times during the measurement process, consequently reducing the accuracy of the analysis. Therefore, dead time must be considered when analyzing radioactive waste samples. During the measurement process, dead time may vary between a few seconds to several tens of thousands of seconds. More long dead time may also result in a temporal loss in the analysis stage, requiring more time than the actual measurement time. Long dead time samples undergo re-measurement after dilution to facilitate the analysis. As the prepared solution is also utilized in the nuclide separation processes, minimizing sample loss during dilution is crucial. Hence, predicting the possibility of dead time exceeding the target sample in advance and determining the corresponding dilution factor can prevent delays in the analysis process and the loss of samples due to dilution. In this study, to improve the issues related to gamma analysis, by using data generated during the analysis process, investigated methods to predict long dead time samples in advance and determining criteria for dilution factors. As a result of comparing the dead time data of 5% or long with the dose of the solution sample, it was concluded that analysis should be performed after dilution when it is about 0.4 μSv/h or high. However, some samples required dilution even at doses below 0.4 μSv/h. Also, re-measurement after dilution, the sample with a dead time of less than 32% was measured with less than 5% when diluted 10 times, and more than 32% required more than 10 times dilution. We suppose that with additional data collection for analyzing these samples in the future, if we can establish clearer criteria, we can predict long dead time samples in advance and solve the problem of analysis delay and sample loss.
It is essential that continual assessments of the impact of mine-derived water as a long-lasting burden on freshwater environments. Abundance-based evaluations of benthic macroinvertebrates have been conducted to evaluate anthropogenic disturbances and devise policies to reduce their impact. In this study, the status of a stream habitat was evaluated based on the body length and biomass weight of benthic macroinvertebrates of the family Baetidae. Following the renewal of the mining water treatment plant, the abundance of Baetidae assemblages recovered to a level comparable to that of a reference site. However, relatively low values were found for both body length and biomass weight in Baetidae species inhabiting the reddened streambed area, suggesting that the habitat has not yet been completely recovered despite the recovery of the abundance of the Baetidae assemblages. Therefore, continuous investigation and evaluation of this disturbed stream are necessary until their growth conditions of the habitat have functionally recovered
Considering the domestic condition with small land area and high population density, it is necessary to develop technology that can reduce the disposal area than the deep geological disposal method. For this, KAERI is developing a nuclide management process that can reduce the environmental burden of spent fuel, and establishing an evaluation model that can evaluate the performance of various process options. It is expected that an optimal option of the nuclide management process can be derived from disposal perspective by applying the evaluation model. The mass flow between processing steps of the radionuclide management process is the basic quantity required to quantify the evaluation criteria. Therefore, we built a generalized block model on GoldSim, which can simulate mass flow of various radionuclide management process options. In addition to the mass flow, this model was established to derive the amount of wastes generated by each processing step, the composition of nuclides, and radiological properties (decay heat, radioactivity, etc.). The mass flow and waste property derived from the models are closely related to the factors that determine the area of disposal concepts. Based on this, a disposal area calculation model was established as a model to evaluate the effectiveness of the radionuclide management process on environmental burden reduction. For verification, three process options, which can manage radionuclides having high decay heat (Cs, Sr) or large volume (U), were selected and evaluated as reference processes. And two disposal options, deep geological disposal and deep borehole disposal concepts were considered to be linked with the processes. As a result, it was confirmed that the disposal area could be reduced in the process separating radionuclides having high decay heat. In the future, other evaluation models for economic viability and safety will be added in the GoldSim model.
The skeleton of fuel assembly is composed of top nozzle, bottom nozzle, grids, and guide tubes. In the reactor core, all the parts of the fuel assembly suffer degradations due to the condition of high temperature, pressure and water environment. Therefore, many material properties of high temperature mechanical strength, corrosion and irradiation resistance have been considered to choose the material for fuel assembly parts in the fuel development stage. The guide tubes have important roles to connect each parts and support the load of fuel assembly while the fuel is lifted. In Westinghouse 14×14 standard fuel assembly, Zircaloy-4 was used for the material of the guide tubes. Zircaloy-4 has a resistance to water corrosion and maintain good mechanical properties after the discharge from the core, so this alloy is also utilized for a fuel rod cladding material although the microstructure is slightly different due to the heat treatment difference. Thus, it is expected that there is no issue regarding the guide tube integrity after the discharge and during the storage in the pool, especially in case of low burn-up. However, the surface oxidation and resultant hydrogen pick-up can affect to the embrittlement to the Zr alloy. So, it is needed to know the actual status of spent fuel assembly by performing post-irradiation examination. In this study, the degradation level of the guide Tubes in low burn-up spent fuel assembly was investigated using the KAERI PIE facility in order to make some data which can be utilized to the baseline for evaluating the integrity of the spent fuel skeleton.
최근 국가연구개발의 집행예산은 증가 추세에 있고, 이에 따라 국가연구개발 사업의 양적 성과 또한 증가하고 있으나, 질적 성과의 증가세는 양적 성과 대비 취약한 것으로 나타나고 있다. 특허등급 및 기술이전효율성이 낮은 기술 등 질적 성과 부진의 원인으로 ‘건 수’ 위주의 성과평가에 대한 개선 필요성이 제기되고 있으며, 이에 대한 대응으로 다양한 ‘질적 성과지표’를 이용한 성과평가가 도입되고 있다. 본 연구에서는 여러 질적 성과지표 중 주요국 (미국, 유럽, 일본) 특허청에 모두 출원하여 특허의 해외경쟁력을 측정할 수 있는 ‘삼극특허’ 창출 과제를 대상으로 연구개발사업의 질적성과 평가를 위한 성과지표로서 삼극특허에 영향을 미치는 요인을 분석하였다. 분석결과, R&D규모 요인 및 과제특성 요인 중 일부는 삼극특허 창출에 통계적으로 유의한 영향을 미치는 것으로 나타났다. 본 연구는 성과분석 측면에서 선행 연구가 상대적으로 미진한 삼극특허를 관심대상으로 확장하고, 삼극특허 창출의 영향요인을 선형회귀분석(OLS)을 통해 살펴본 초기연구라는 점에서 의의가 있다.
천수만과 태안해역의 제한영양염을 평가하기 위해 장기자료 분석과 생물검정실험을 진행하였다. 우선 잠재적인 제한영양염을 평가하기 위해 국가수질측정망에서 제공되는 2004~2016년 동안의 장기 영양염 자료를 이용하였다. 장기자료의 DIN/DIP를 분석한 결과 대 부분 16이하로 N 제한이 우세하였지만 N, P, Si의 농도비를 이용한 분석에서는 하계와 추계에는 N 제한이 우세하였고, 동계와 춘계에는 해역에 따라 일부 Si 제한을 보이거나 또는 제한이 나타나지 않았다. 생물검정실험 시 채집된 현장수의 영양염 분석결과, DIN/DIP는 3월 과 5월에 모든 정점에서 P 제한을 나타냈고, 7월과 10월에는 N 제한이 우세하였다. N, P, Si의 농도비를 이용한 분석에서 3월과 5월은 P와 Si 제한을 보이거나 제한영양염이 나타나지 않은 정점이 존재하였으나 7월과 10월에는 N 제한이 우세하였다. 실질적인 제한영양염을 평 가하기 위해 수행된 생물검정실험 결과 3월에는 특정 제한영양염이 나타나지 않았으나, 5월, 7월 10월에는 NH4 +와 NO3 -가 반응을 보임으 로서 이 시기에는 N이 식물플랑크톤 성장에 직접 관여하는 실질적인 제한영양염임을 확인하였다.
Safety for the radioactive waste disposed of in the disposal facility should be secured through safety assessment in consideration of the various situations. In this study, the influence and correlation of EDTA and ISA, which are the factors that can impede the safety of the disposal facility, were analyzed using the PHREEQC computational code. Thermodynamic database (TDB) of Andra, specific ion interaction theory (SIT) model as ionic strength correction model, radionuclides (Ni, Am, Pu) were adopted to perform the calculation on the distribution of chemical species by pH. According to the results, EDTA dominated the system and the effect of ISA is relatively small for the distribution of the chemical species of divalent and trivalent cations in neutral and weak base conditions. In the case of the tetravalent cations, the effect of ISA increased compared to the previous case especially in the strong base conditions. In conclusion, EDTA has a more significant effect on the system than ISA under the environment of the domestic disposal facility. Furthermore, when EDTA and ISA are present simultaneously in the system, the effects of two materials are inversely proportional and this characteristic should be considered during the safety assessment.
Garnet is one of the promising ceramic waste forms for immobilizing radioactive wastes. It has an A3 [VIII]B2 [VI]T3 [IV]O12 structure, so it can accommodate various cations of different sizes and coordination. Silicon usually occupies the centers of the tetrahedron structural site (T[IV]O4) in natural garnet. However, substitution of the T-site with iron, which has a relatively large ionic radius, causes the expansion of a unit cell volume of garnet and allows the incorporation of large cations such as actinides at other sites. Relatively few leaching data have been reported for ferrite garnet waste forms to date. In this study, we synthesized gadolinium-iron-garnet and evaluated the leaching property using cerium as a surrogate for actinide elements. The test specimens were made by cold pressing and sintering process. Three different standard leaching tests were performed as follows. The PCT-A (ASTM C1285) was performed for 7 days at 90°C to the crushed sample (0.149 to 0.074 mm). The ANSI/ANS-16.1 standard leach test was performed at ambient conditions for 5 days with constant replacement of leachate. Finally, the MCC-1 (ASTM C1220) test was performed for 28 days at 90°C with different types of leachants such as ultrapure water, brine, and silicate water. The last two leaching tests were conducted on monolithic specimens. After the end of the test, leachate was analyzed by inductively coupled plasma mass spectroscopy (Agilent, ICP-MS 7700S).
서해병 폐기물 배출해역 오염심화구역의 퇴적물 정화·복원을 위해 2013, 2014, 2016, 2017년에 준설토를 피복하였다. 피복 효과 평 가를 위해 배출해역 내 피복구역(5개 정점)과 자연회복구역(2개 정점)을 설정하고 2014년부터 2020년까지 연 1회 구역별 표층 퇴적물을 채취 하여 퇴적물 물리·화학적 특성 및 저서동물상을 분석하였다. 퇴적물 평균 입도(Mz)는 자연회복구역에서 5.91~7.64 Φ로 세립질이었고 피복구 역에서는 준설토의 영향으로 1.47~3.01 Φ의 조립질 퇴적물로 구성되어 있었다. 유기물 및 중금속 함량은 피복구역에서 자연회복구역 대비 약 50 % 낮아(p<0.05) 준설토 피복 효과가 있는 것으로 판단되었다. 대형저서동물 분석 결과에서는 피복구역의 출현종수, 생태지수가 자연회 복구역보다 낮게 나타났다(p<0.05). 피복구역의 출현종수 및 생태지수의 시계열 분석 결과에서는 2013, 2014년 피복 이후 초기 4년간 증가하 다가 이후 감소하는 경향을 보였다. 이는 피복으로 인해 빠른 성장과 짧은 수명의 특징을 보이는 기회종 생물들이 피복 초기에 우세하다가 2016, 2017년에 추가로 피복이 진행됨에 따라 서식환경이 다시 교란되어 나타난 현상으로 추정된다. AMBI는 자연회복구역 및 피복구역에서 모두 2등급(Good), BPI는 1~2등급 수준을 유지하고 있어 건강한 저서상태로 평가되었다. 따라서 폐기물 배출해역의 오염퇴적물 정화 및 저 서생태계 복원을 위한 준설토 피복은 오염도 저감효과는 나타나지만 저서생태계의 측면에서는 장기적인 모니터링을 통해 회복추이를 관찰 해야 할 것으로 판단된다. 또한 향후 배출해역의 오염심화구역 정화 복원 사업 확대 시 적응적 관리가 필요할 것으로 판단된다.