본 연구는 화력발전소 배출로 인한 지표면 오염물질 농도의 시·공간적 영향을 실측 자료를 바탕으로 정량적으로 분석하려는 목적으로 수행되었다. 배출과 농도 관계의 정량적 분석을 위해 우선 기상 조건과 주변 배출원의 영향을 고려하였다. 이를 위해 자료의 선택과 관측지점 선정 과정을 제안하였고, 선정된 지표면 시·공간 자료에 K-Z 필터와 경험직교함수(EOF) 분석 기법을 적용하였다. 사용된 자료는 2014-2017년 4년의 기간 동안 당진과 태안 화력발전소 굴뚝 자동측정기기의 농도값을 이용하여 산출한 한 시간 평균 배출량 자료와 지표면 대기오염농도 측정망 자료이다. 기상 자료로는 최근 배포 중인 ERA5 재분석자료와 기상청 종관기상관측소 한 시간 평균 자료가 사용되었다. 발전소만의 영향이 최대한 보이도록 기상 효과와 지리적인 요인을 고려하여 선택한 시간대의 선정된 관측소 자료만을 이용하여 분석한 결과, 지표면 대기오염물질의 EOF 첫 번째 모드는 SO2, NO2, PM10 모두에 대해 97% 이상의 변동성을 설명하였다. 또한 지표면 농도장의 EOF 첫 번째 모드의 시계열은 화력발전소 배출과 유의미한 상관성을 보였다. 결과적으로 당진 화력발전소 SO2, NO2, TSP 시간 당 배출량이 각각 10%가 감소하면, 남서풍 계열의 바람에 의해 직접 영향을 받는 서울 수도권 지표면 평균 SO2 농도는 0.468 ppb (R=0.384), NO2는 1.050 ppb (R=0.572), PM10은 2.045 μg m−3 (R=0.343) 정도가 감소한다고 판단할 수 있다. 태안화력발전소의 경우, SO2, NO2, TSP 배출량을 각각 시간당 10% 씩 감축하면, SO2는 0.284 ppb (R=0.648), NO2는 0.842 ppb (R=0.683), PM10은 1.230 μg m−3 (R=0.575) 정도가 감소될 수 있음을 확인하였다. 태안화력발전소는 당진화력발전소에 비해 수도권지역 농도에 미치는 영향은 작았으나, 상관관계는 더 높았다.
In this study, real-time monitoring of air quality using a real-time mobile monitoring system was conducted to identify the emission characteristics and current status of air pollutants and odorous substances that are mainly generated in domestic dyeing industrial areas and to trace the pollutant sources. The concentration of toluene in the industrial area was detected up to 926.4 ppb, which was 3 to 4 times higher than that of other industrial areas. The concentration of methylethylketone was 124.7 ppb and the concentration of dichloromethane was 129.5 ppb. Acrolein concentration was highest at E point at 521.6 ppb, methanol concentration was highest at D point at 208.8 ppb, and acetone concentration was highest at M and N points at 549.3 ppb. The most frequently detected concentration of pollutants in the air quality monitoring results in the industrial area was, in descending order, toluene > methanol > acrolein > dichloromethane > acetone, which was similar to the chemical emissions used in the industrial area by the Pollutant Release and Transfer Register data. The concentration of odorous substances measured in real time was compared with the concentration of minimum detection, and the concentration of hydrogen sulfide was about 10 times higher than the concentration of minimum detection at A point, which was judged to be the main odorous cause of A point. In the future, if the real-time mobile measurement system is constructed to automatically connect wind direction/wind speed, PRTR (Pollutant Release and Transfer Register) data and SEMS (Stack Emission Management System) data, etc., it was judged that more accurate monitoring could be performed.
Rapid industrialization and urbanization have generated huge amount of environmental pollution. Especially, synthetic organic chemicals have been a serious international problem for over half a century due to their toxic and hazardous chemicals. Eco-friendly strategies for removing the chemicals from the soil and water are becoming a top priority around the world and biological treatment such as phytoremediation and bioremediation is less expensive and more sustainable than other conventional remediation techniques. Recently, many pollutant diminishing microbial endophytes have been discovered from various plants grown in contaminated area and the function of microbes to improve phytoremediation of organic pollutants has been reported. Thus, we classify synthetic organic pollutants into groups of similar compounds and discuss the contribution of endophytes to enhance phytoremediation.
미량화학물질은 미량 (ng/L)으로 인체 또는 환경에 심각한 피해를 줄 수 있는 물질이므로, 효과적인 미량오염물질 제거 시스템 개발이 필요한 실정이다. 분리막 기반 수처리 공정 중 정삼투 공정은 미량화학물질을 효과적으로 제어할 수 있는 저에너지, 친환경 공정으로 각광받고 있으나, 제거율, 제거기작, 공정최적화 등의 연구가 필요한 실정이다. 따라서, 본 연구에서는 정삼투 공정을 이용하여 미량화학물질의 제거성능을 평가하고 그 기작을 평가하여 수계 내 존재하는 미량오염물질을 신속하고 효율적으로 처리할 수 있는 삼투막 기반 막공정 공법을 제시하고자 한다.
본 연구에서는 선박용 엔진을 활용하여 E2, E3 사이클 시험 결과로부터 연료 내 황 함유량 변화에 따른 대기오염물질 배출 특성을 조사하였다. 테스트를 위해 사용된 엔진은 360 PS의 엔진(Doosan L126TIH engine)을 활용하였고, 동력계로는 Horiba-Schenck사의 400㎾급 동력계인 W400을 사용하였다. 엔진에서 발생되는 대기오염물질 계측을 위해서는 오스트리아 AVL사의 FTIR과 SPC 장비를 배기라인 후단에 장착해서 사용하였다. 실험 결과로는 E2, E3 사이클 모두에서 연료 내 황 함유량이 증가할수록 THC와 CO의 단위 출력 당 배출량은 감소하고 입자상물질은 증가하였다. 연료의 황 함유량이 증가할수록 동점도가 증가되어 엔진의 연료소모율이 좋아지는 것을 확인하였다. 이는 본 연구에 사용된 엔진의 경우 연료 분사압력이 일정한 상태에서 동점도 증가에 따른 분무입자의 평균입경이 커짐에 따른 연소 상태가 개선되었기 때문이라 생각되어진다. 질소산화물의 경우 이번 연구에서는 황함유량의 변화에도 배출량에서는 큰 변화를 보이지 않았다.
This study investigates the indoor air quality conditions of the total of 52 buses depend on seasons, time and others. We evaluated the CO₂and PM10, the controlled parameters in express buses by Ministry of Environment and VOCs and HCHO, the non-controlled parameters. The CO₂concentration during peak commute times was 38.5% in summer and 15.4% in autumn, which are higher than the normal. But, PM10 concentration was influenced by the outside air not number of passengers. The concentration of VOCs were not related with other parameters such as number of passengers, seasons, and driving time. And then, the formaldehyde concentration was not related with seasons as it showed little difference between summer and autumn.
In order to investigate the runoff characteristics of nonpoint source pollutants in the Lake Doam watershed, water quality and flow rate were monitored for 38-rainfall events from 2009 to 2016. The EMC values of SS, COD, TN and TP were in the range of 33~2,169, 3.5~56.9, 0.09~7.65 and 0.06~2.21 mg L-¹, respectively. As a result of analyzing the effect of rainfall factor on the nonpoint source pollutant load, EMCs of SS, COD and TP showed a statistically significant correlation with rainfall (RA) (p<0.01) and SS showed highly significant correlation with maximum rainfall intensity (MRI, R=0.48). The load ranges of SS, COD, TN and TP were 10.4~11,984.6, 1.1~724.4, 0.6~51.6 and 0.03~22.85 ton event-¹, respectively, showing large variation depending on the characteristics of rainfall events. The effect of rainfall on the load was analyzed. SS, COD and TP showed a positive correlation, but TN did not show any significant correlation. The annual load of SS was the highest with 88,645 tons year-¹ in 2011 when rainfall was the highest with 1,669 mm. The result of impact analysis of nonpoint source pollution reduction project and land-use change on runoff load showed that pollutant load significantly reduced from 2009 to 2014 but SS and TP loads were increased from 2014 to 2016 due to increase in construction area. Therefore, we suggested that nonpoint source pollution abatement plan should be continued to reduce the soil loss and pollutants during rainfall, and countermeasures to reduce nonpoint source pollution due to construction need to be established.
In this study, the loading rates (or emission rate) and concentrations of air pollutants (ammonia, hydrogen sulfide, carbon dioxide, methane, nitrous oxide, and particulate matter (PM2.5, PM10 and TSP)) emitted from a naturally ventilated dairy facility were analyzed and compared to enable a better understanding that are in close proximity to each other, air pollution status. In general, the pollution patterns should be similar in measurement sites that are in close proximity to each other, and this hypothesis was fundamental to our approach in this study. For the comparison in nearby different sites, monitoring points were located at inside (source site) and outside the dairy building (ambient site), and concentrations and wind velocity were simultaneously monitored in real time. The patterns of PM2.5 emission rate and loading rate were similar in the source site and the ambient site which was consist with the hypothesis, while the PM2.5 mass concentration were not similar in both sites. As well as PM2.5, the emission rates (source site) of gaseous carbon dioxide (CO2) and nitrous oxide (N2O) were highly correlated to their loading rates (ambient site), while the concentrations of CO2 and N2O were not similar. Therefore, wind velocity, which is included in the emission or loading rate, should be simultaneously monitored with the concentration at the same measurement points for better understanding of the air pollution status.
The purpose of this study was to characterize the concentration of and evaluate the pollution level of indoor air pollutants among the public-use facilities located in Seoul that are mainly used by medically sensitive users. The data used in this study were analyzed based on the supervision data provided by Seoul Metropolitan Government Research Institute of Public Health and the Environment. There were 399 nursery schools, 188 medical facilities, 42 elderly care facilities and 96 postnatal care centers. The indoor air pollutants to be investigated were analyzed for PM10, CO2, HCHO, TAB and CO. Through the analysis, it was found that among the surveyed pollutants, TAB levels exceeded the criteria most often, in 54 facilities. Among the surveyed facilities, nursery schools exceeded the criteria most often, in 49 facilities. There was a statistically significant difference between the pollutants in each facility (p<05). However, considering the characteristics of the data used in this study, additional factors should be investigated for factors affecting the concentration of each indoor air pollutant for a more rational evaluation.
선박의 오염물질 배출에 대한 규제는 최근 IMO/MEPC(국제해사기구/해양환경보호위원회)를 통해서 진행 중이다. 선박오염원 에서 배출된 오염물질은 국지적인 요인에 의해서 연안지역을 비롯하여 육지로 확산될 수 있다. 인천과 같이 선박 배출 오염물질에 노출 되어 있는 항구 도시에서 선박오염원 조절은 연안지역의 대기질 관리정책을 효율적으로 고안하기 위해서 반드시 필요하다. 연안지역의 대기오염물질 중 선박에 의한 NOx와 SOx의 농도는 전체 NOx와 SOx 농도의 각각 14 %와 10 %를 차지한다(NIER, 2008). 연안도시지역의 대기질은 국지적인 순환에 의존하는 오염물질의 확산 경향과 선박의 수에 영향을 받는다. 선박오염원으로부터 배출된 오염물질의 확산 을 WRF(Weather Research and Forecasting model)의 기상장을 기초로 CALPUFF(California Puff model)를 사용하여 분석하였다. 그리고 연안도 시지역의 대기확산모델은 정박한 선박과 입·출항하는 선박으로 나누어 각각 점오염원과 선오염원으로 구분하여 모의하였다. 선박척수 82~84척을 기준으로 NOx의 총 평균 배출량은 입·출항시 각각 6.2 g/s, 6.8 g/s이었고, SOx의 총 평균 배출량은 입·출항시 각각 3.6 g/s, 5.1 g/s 이었다. 정박 중인 선박의 NOx와 SOx에 대한 총 평균 배출량은 각각 0.77 g/s, 1.93 g/s이었다. 육풍의 영향으로 인하여 인천항으로부터 내 륙으로 진행되는 오염물질의 수송이 억제되었고, 내륙의 SOx와 NOx 농도가 일시적으로 감소하는 원인이 되었다. 해풍에 의해 NOx와 SOx가 내륙으로 확산되었고, 내륙의 NOx와 SOx의 농도가 점차 증가하였다. 인천항과 인접한 지역의 오염물질의 농도는 해륙풍의 영향 보다 인천항에 정박 중인 선박오염원에 의한 영향이 더욱 크게 반영되었다. 본 연구는 연안도시지역의 대기질 정책고안과 배출기준을 정하는 것에 유용할 것으로 기대된다.
반 건조 소화 하수슬러지와 폐플라스틱을 혼합하여 파일롯 규모(85.3kg/hr)의 연속식 저온 (510℃~530℃) 열분해 실험을 하였다. 실험결과 열분해가스 발생량은 투입물 건량의 최대 68.3%, 발열 량은 40.9 MJ/Nm3 이었으며, 연속식 열분해에 따른 외기 유입율이 19.6%이었다. 오일은 투입물 건량 의 4.2%가 발생하였고, 저위발열량은 32.5 MJ/kg 이었으며 시설부식 등을 일으킬 수 있는 황과 염소의 함량이 각각 0.2% 이상이었다. 투입물 건량의 27.5%가 발생한 탄화물의 저위 발열량은 10.2 MJ/kg 이 었고, 용출시험 결과 지정폐기물에 해당하지 않았다. 열분해가스의 연소 배가스는 일산화탄소, 황산화물, 시안화수소 등의 배출농도가 특히 높았고, 다이옥신 (PCDDs/DFs)은 0.034 ng-TEQ/Sm3 로서 법적 기 준치 이내였다. 건조 배가스 응축으로 발생한 폐수는 수질오염물질 47개 항목 중 총질소, n-H 추출물질, 시안 등의 고농도 항목이 많아 전처리 후 하수처리장 등에서의 병합처리 방식을 고려할 필요가 있었다.
최근 대두된 난분해성 미량오염물질은 일반적인 수처리 공법으로는 제거가 잘 되지 않고 수 ng/L 단위로도 수중생태계와 인간에게 독성을 나타내므로 반드시 처리가 필요하다. 따라서 본 연구에서는 CNT (Carbon nanotube)를 이용하여 중공사막을 제조한 후, 그것을 전극으로 사용하여 미량오염물질을 전기화학적으로 산화 제거하였다. SEM, BET, flux, conductivity 결과를 통해 전극의 특성을 분석하였다. BPA(bisphenol A), Sulfamethoxazole(SMX), N,N-Diethyl-metatoluamide(DEET) 3가지 물질을 제거 대상 미량오염물질로 선정하였고 CHM 산화극 내부로 오염물질이 포함된 물을 흘려 보내주었을 때 5분 만에 100%의 제거효율을 보였다.
In this study, we analyzed the concentration of cadmium and mercury in urine and lead in blood from 668 residents in the exposed and compared areas in Gwangyang-si and Yeosu-si, from July 2013 to December 2015. According to the lifestyle (past smoking, current smoking, passive smoking, drinking and exercise), the concentration of cadmium in urine was higher in the compared areas than in the exposed areas in Gwangyang. However, the concentration of cadmium in urine according to the lifestyle except drinking was higher in the exposed areas than in the compared areas in Yeosu. According to the past smoking and current smoking, the concentration of mercury in urine was higher in the compared areas than in the exposed areas in Gwangyang, but the passive smoking, drinking and exercise showed similar concentration levels both in the exposed and compared areas in Gwangyang. The concentration of mercury in urine according to the past smoking and current smoking was higher in the exposed areas than in the compared areas in Yeosu, but the concentration of mercury in urine according to the drinking and exercise was lower in the exposed areas than in the compared areas in Yeosu. According to the past smoking, the concentration of lead in blood showed similar concentration levels in the exposed and compared areas in Gwangyang, but regarding current and passive smoking, it was higher in the compared areas than in the exposed areas in Gwangyang. Especially, the concentration of lead in blood according to the drinking in Gwangyang showed statistically significant difference (p<0.05). The concentration of lead in blood according to the lifestyle was higher in the compared areas than in the exposed areas in Yeosu.
The UV/chlorine process is a UV-based advanced oxidation process for removing various organic pollutants in water. The process is becoming increasingly popular because of its effectiveness in practice. It is important to the safe and efficient operation of a UV/chlorine process that the optimal operating conditions for both target removal objective and saving energy are determined. Treatment efficiency of target compounds in UV/chlorine process was mainly affected by pH and scavenging factor. In this study, kinetic based mathematical model considering water characteristics and electrical energy dose calculations model was developed to predict of treatment efficiency and optimal operating conditions. The model equation was validated for the UV/chlorine process at the laboratory scale and in pilot tests at water treatment plants.
In this study, we investigated influent and effluent water pollutants in 53 Public Sewage Treatment Works (PSTWs) where industrial wastewater or landfill leachate is combined four times for two years from 2014 to 2015. Also, we analyzed the characteristics of heavy metals and volatile organic carbons at influent and effluent of these PSTWs caused by sewage treatment combined with industrial wastewater or landfill leachate. As a result, six heavy metals such as barium, copper, iron, manganese, nickel and zinc, and four volatile organic carbons (VOCs) including phenols, di(2-)ethylhexyl phthalate (DEHP), formaldehyde and toluene were observed above detection limits in most of PSTWs. Also, it was revealed that six heavy metals such as hexavalent chromium, mercury, cadmium, chromium, nickel and selenium, and four VOCs including 1,1-dichloroethylene, vinyl chloride, naphthalene, and epichlorohydrin were observed more frequently according to precipitation. As a result of reviewing the monitoring data on “Water Quality Monitoring Networks” in lower watersheds of PSTWs, both heavy metals and VOCs were below detection limits, indicating that the effluent water had little influence on the watershed. Nevertheless for the better management of influent and effluent pollutants in PSTWs, it is necessary to establish the advanced management plans for water pollutants in PSTWs, which include a list of priority substances management, monitoring plans, and guidelines for industrial wastewater and landfill leachate combined in PSTWs.
As a replacement for activated carbon, biochar was synthesized and used for the adsorptive removal of formaldehyde and nitrogen oxide. Biochar was produced from the fast pyrolysis of the red marine macro alga, Pyropia tenera. The P. tenera char was then activated with steam, ammonia and KOH to alter its characteristics. The adsorption of formaldehyde, which is one of the main indoor air pollutants, onto the seaweed char was performed using 1-ppm formaldehyde and the char was activated using a range of methods. The char activated with both the KOH and ammonia treatments showed the highest adsorptive removal efficiency, followed by KOH-treated char, ammonia-treated char, steam-treated char, and non-activated char. The removal of 1000-ppm NO over untreated char, KOH-treated char, and activated carbon was also tested. While the untreated char exhibited little activity, the KOH-treated char removed 80% of the NO at 50°C, which was an even higher NO removal efficiency than that achieved by activated carbon.