검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 215

        22.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Polyacrylonitrile (PAN)-based carbon fibers (CFs) and their composites, CF-reinforced plastics, have garnered significant interest as promising structural materials owing to their excellent properties and lightweight. Therefore, various processing technologies for fabricating these advanced materials using thermal energy have been intensively investigated and developed. In most cases, these thermal energy-based processes (heat treatment) are energy and time consuming due to the inefficient energy transfer from the source to materials. Meanwhile, advanced processing technologies that directly transfer energy to materials, such as radiation processing, have been developed and applied in several industrial sectors since the 1960s. Herein, general aspects of radiation processing and several key parameters for electron-beam (e-beam) processing are introduced, followed by a review of our previous studies pertaining to the preparation of low-cost CFs using specific and textile-grade PAN fibers and improvements in the mechanical and thermal properties of CF-reinforced thermoplastics afforded by e-beam irradiation. Radiation processing using e-beam irradiation is anticipated to be a promising method for fabricating advanced carbon materials and their composites.
        5,100원
        23.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, nitric acid oxidation with varied treatment temperature and time was conducted on the surfaces of polyacrylonitrile- based ultrahigh modulus carbon fibers. Scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and surface tension/dynamic contact angle instruments were used to investigate changes in surface topography and chemical functionality before and after surface treatment. Results showed that the nitric acid oxidation of ultrahigh modulus carbon fibers resulted in decreases in the values of the crystallite thickness Lc and graphitization degree. Meanwhile, increased treating temperature and time made the decreases more obviously. The surfaces of ultrahigh modulus carbon fibers became much more activity and functionality after surface oxidation, e.g., the total surface energy of oxidized samples at 80 °C for 1 h increased by 27.7% compared with untreated fibers. Effects of surface nitric acid oxidation on the mechanical properties of ultrahigh modulus carbon fibers and its reinforced epoxy composites were also researched. Significant decreases happened to the tensile modulus of fibers due to decreased Lc value after the nitric acid oxidation. However, surface treatment had little effect on the tensile strength even as the treating temperature and processing time increased. The highest interfacial shear strength of ultrahigh modulus carbon fibers/epoxy composites increased by 25.7% after the nitric acid oxidation. In the final, surface oxidative mechanism of ultrahigh modulus carbon fibers in the nitric acid oxidation was studied. Different trends of the tensile strength and tensile modulus of fibers in the nitric acid oxidation resulted from the typical skin–core structure.
        4,500원
        24.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The structural transformationss of oriented poly(vinyl alcohol) (PVA) fibers impregnated with potassium bisulfate (PBS) were studied in detail on the way from PVA precursor fibers till carbonized at a temperature of 1000 °C fibers. It has been shown that the impregnation of PVA fibers with a sulfur-containing compound (PBS) is an efficient technique to decrease the thermoplasticity of PVA fibers during heat treatment at high temperatures in air and argon and contributes to a high yield of coke residue after heat treatment up to 1000 °C. TMA, TGA, DSC, mass spectrometry, FTIR, Raman spectroscopy, SEM, WAXS and SAXS were used to study the structural transformations of oriented PVA fibers impregnated with PBS at the stages of their preliminary thermal stabilization (215 °C), thermal stabilization (215–400 °C) and carbonization (400–1000 °C). A reaction scheme has been proposed that fully describes carbonization chemistry in the entire studied temperature range. The processing temperature of 215 °C was found to be optimal for preliminary thermal stabilization of PVA fibers impregnated with PBS. The heat treatment in an inert medium can be recommended as the optimal for thermal stabilization of fibers impregnated with PBS. The characteristics of the carbonized PVA fibers, such as strength, modulus and electrical conductivity, were close to the characteristics of commercial cellulose-based carbon fibers yarns.
        4,600원
        25.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The composite PAN fibers which incorporated with CNTs and Titania were prepared by mean of wet spinning. These fibers were then pre-oxidized with microwave heating in an air atmosphere. A combination of characterizations was carried out to study the impact of nanoparticles fillers on the properties of as-spun fibers and their performance during the microwave pre-oxidation. The addition of an equal amount of fillers made obvious changes in the chemical and crystalline structure, consequently improves the strength, and this could lower the capability to creep over a wide range of temperatures in the subsequent processes. FTIR and NMR analyses results of the pre-oxidized fibers exhibited clear changes in the PAN structure, where the dehydrogenation reaction and the degree of cyclization were investigated. Additional confirmation of the occurrence of cyclization reaction was achieved by XRD and thermal analysis. According to the TGA results, the pre-oxidized CNT1/ Ti-PAN fibers exhibit greater thermal stability suggesting high carbon content and good quality could result in the dependent carbon fibers.
        4,200원
        27.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Increasing demand for fossil fuels is associated with massive atmospheric CO2 levels. Considering that numerous studies have been published with CO2 capturing techniques, utilizing techniques are yet in early stage with financial or technical issues. As a part of chemical conversion in CO2 utilization, this paper investigated the performance of a CO2 and H2O mixture (CHM) onto activated carbon fibers (ACF) for surface modification. CHM-treated ACF samples were prepared at a pressure of 20 bar with 100 °C of water vapor and 750 μL of CO2 for 1 h through the gas-phase, and labeled as C-ACF850. For the control sample, N-ACF850 was also prepared by the impregnation of nitric acid. Physiochemical analyses revealed that the overall characteristics of C-ACF850 lay between ACF850 and N-ACF850. C-ACF850 experienced minimized surface area decrement (21.92% better than N-ACF850), but increased surface functional groups (50.47% better than ACF850). C-ACF850 also showed preferable adsorption efficiency on selected metals, in which case both physical and chemical properties of adsorbent affect the overall adsorption efficiency. In this regard, a novel applicability of CHM may present an appealing alternative to traditionally used strong acids.
        4,000원
        28.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Spinnable mesophase pitch precursor containing more than 98% mesophase content was successfully prepared from FCC-DO (fluid catalytic cracking-decant oil) without hydrogenation or catalytic reaction. The preparation method involved thermal condensation, vacuum treatment, and annealing treatment. Petroleum mesophase pitch-based carbon fibers are produced by melt spinning of pitch precursors, followed by stabilization and carbonization. The resulting carbon fiber exhibited good mechanical performances up to tensile strength of 2.1 GPa and tensile modulus of 212 GPa, with strain-to-failure higher than 1.0%. These properties ensuring that the automotive grade carbon fibers can be successfully prepared from FCC-DO derived petroleum mesophase pitches through the cost-competitive processes.
        4,000원
        29.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fibrous adsorbents, such as activated carbon fibers (ACF) have acknowledged advantages of rapid adsorption rate and ease of modification compared with granular and powdered adsorbents. Based on the surface modification of lyocell-based ACF, we observed different surface characteristics of ACF samples with variation in the mixing ratio and impregnation time of H3PO4, NaCl, and KMnO4 solution. For an engineering application, we also explored the adsorption characteristics of thusproduced ACF samples onto volatile organic compounds (VOCs). Isothermal adsorption experiments were performed using toluene and benzene as adsorbates. Results indicate that both physical and chemical surface properties have an effect on the adsorption of volatile organic compounds (VOCs).
        4,000원
        30.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        After flame-retardant treatment by the two different agents, the thermal behaviors of Lyocell fibers are discussed. In this research, H3PO4 and NaCl reduced the degradation rate and increased the char yield of the Lyocell fibers, and also increased the limiting oxygen index with the char yield increased. After treatment, the integral procedure decomposition temperature and the activation energy of Lyocell fibers are significantly increased by various concentration factors. These phenomena were indicated by the dehydration, rearrangement, formation of carbonyl groups, the evolution of carbon monoxide and dioxide, and carbonaceous residue formation. These effects were indicating the slow pathway of flame retardancy for the Lyocell fibers and are attributed to the two different flame-retardant agent treatments.
        4,000원
        31.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Commercial ultra-high-strength PAN-based carbon fibers (T1000G) were heat-treated at the temperature range of 2300– 2600 °C under a constant stretching of 600 cN. After continuous high-temperature graphitization treatment, microstructures, mechanical properties and thermal stability of the carbon fibers were investigated. The results show that the T1000G carbon fibers present the similar round shape with a smooth surface before and after graphitization, indicating the carbon fibers are fabricated by dry–wet spinning. In comparison, the commercial high-strength and high-modulus PAN-based carbon fibers (M40JB and M55JB) present elliptical shapes with ridges and grooves on the surface, indicating the carbon fibers are fabricated by wet spinning. After graphitization treatment from 2300 to 2600 °C under a constant stretching of 600 cN, the Young’s modulus of the T1000G carbon fibers increases from about 436 to 484 GPa, and their tensile strength decreases from about 5.26 to 4.45 GPa. The increase in Young’s modulus of the graphitized T1000G carbon fibers is attributed to the increase in the crystallite sizes and the preferred orientation of graphite crystallites along the fiber longitudinal direction under a constant stretching condition. In comparison with the M40JB and the M55JB carbon fibers, the graphitized T1000G carbon fibers are easier to be oxidized, which can be contributed to the formation of more micropores and defects during the graphitization process, thus leading to the decrease in the tensile strength.
        4,000원
        32.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study demonstrates that low processing rate for producing polyacrylonitrile (PAN)-based carbon fiber is a critical to obtain a homogeneous radial microstructure with high resistance to oxidation, thereby resulting in their improved mechanical strength. The dry-jet wet spun PAN organic fibers were processed (e.g., stabilized and then carbonized) utilizing two different rates; one is 1.6 times longer than the other. The effect of processing rate on the microstructural evolutions of carbon fibers was analyzed by scanning electron microscopy after slow etching in air, as well as Raman mapping after graphitization. The rapidly processed fiber exhibited the multilayered radial structure, which is caused by the radial direction stretching of the extrusion in the spinning. In case of the slowly processed fiber, the layered radial structure formed in the spinning process was changed into a more homogeneous radial microstructure. The slowly processed fibers showed higher oxidation resistance, higher mechanical properties, and higher crystallinity than the rapidly processed one. Raman mapping confirmed that the microstructure developed during spinning was sustained even though fiber was thermally treated up to 2800 °C.
        4,000원
        33.
        2019.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        목적 : 각막에서 일어나는 광학적 현상을 분석하기 위하여, 콜라겐과 동일한 광 특성을 갖는 나노물질에 대한 산란, 회절, 간섭에 의한 광 특성을 조사하였다. 방법 : 광 특성 분석 시뮬레이션 소프트웨어를 이용하여 콜라겐섬유와 동일한 물질의 광 특성을 분석하였다. 입사 빛이 콜라겐섬유를 통과할 때 전기장의 세기 분포를 확인하여 산란 현상을 분석하였다. 또한 콜라겐 광 특성을 갖는 슬릿에서의 광세기 분포를 확인하여, 일반적인 회절 및 간섭 현상과 비교하여 분석하고자 하였다. 결과 : 300~900 nm의 파장 분포를 갖는 입사 빛이 콜라겐섬유의 전·후 검출기에서 파장 별 투과율에 변화가 있는 것을 확인하였다. 특히 589 nm에서는 콜라겐 섬유를 통과한 후 광세기가 통과 이전보다 미세하게 높아졌다. 콜라겐 광 특성을 갖는 판에 빛을 입사시키면 입사 빛과 반사 빛이 중첩되어 정상파를 형성하였다. 정상파의 중심 파장은 589 nm이고 배와 마루는 대략 312 nm 간격으로 반복되었다. 단일 슬릿과 이중 슬릿에 빛을 입사시킨 경우 에도 동일하게 정상파가 관측되었으며, 슬릿 간격 및 두께에 따른 광 투과율에 변화가 있는 것을 확인하였다. 결론 : 콜라겐은 광학적으로 투명하기 때문에, 콜라겐의 광학적 특성을 갖는 판에 의한 투과광의 세기 분포는 일반적인 불투명 물체의 간섭 및 회절에 의한 광세기 분포와는 같지 않음을 확인하였다. 불투명 물체 및 금속에 의한 광학적 현상의 비교 분석 필요하며 이 결과는 다양한 분야에 적용될 수 있을 것으로 판단된다.
        4,000원
        34.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, activated carbon with well-developed mesopores was fabricated using kenaf short fibers as a representative biomass. Concentrated phosphoric acid was selected as an activation agent to create highly developed porous structures, and pore development was observed to occur in relation to the weight ratio of phosphoric acid and kenaf. The pore characteristics of the kenaf-based activated carbon were determined using the N2/ 77K adsorption isotherm, and its microcrystalline structure was analyzed using X-ray diffraction. The highest specific surface area (1570 m2/g) was observed when the weight ratio of phosphoric acid to kenaf was 3:1, and the highest mesopore fraction (74%) was observed at 4:1. The carbonization yield was 45–35%, which is higher than that of commercial activated carbon. The production of porous carbon material by this method offers high potential for application because it can be controlled over a wide range of average pore diameter from 2.48 to 5.44 nm.
        4,000원
        35.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Epoxy resin, which demonstrates a shape memory effect, is reinforced by chopped carbon fibers (CCFs) to improve the thermal and mechanical properties. The interfacial interactions between 2-mm-long CCFs and epoxy make an impact on not only molecular motion but also the physical behaviors of CCFs/epoxy composites. In particular, shape recovery ability of CCFs/epoxy composites is enhanced with an increase in thermal conductivity generated by crossing CCFs in the epoxy system, although CCFs/epoxy composites containing small amounts of CCFs, such as 1 or 3 phr (parts per hundred rubber), show slower recovery rates than those of raw epoxy specimens due to the difficulty of making heat bridges in composites. With these results, it is confirmed that for specific time-dependent purpose, the shape recovery vector of CCFs/epoxy can be controlled using the amount of CCFs.
        4,000원
        36.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        가속화되는 산업화로 인해 중금속 이온의 침출이 환경문제로 떠오르고 있다. 수질 정화를 위한 몇 가지 방법 중 기능성 고분자 섬유를 이용한 흡착은 효율적이며 경제적이라는 장점이 있다. 특히, 폴리아크릴로나이트릴(polyacrylonitrile, PAN)은 금속 이온을 흡착할 수 있는 작용기가 많아 관심을 끌고 있다. PAN은 쉽게 전기방사를 통해 고분자 나노 섬유화될 수 있으며 높은 표면적을 가질 수 있다. 본 총설에서 다룰 복합 PAN 섬유는 폐수 처리를 위한 또 다른 유형의 고분자이다.
        4,000원
        38.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pitch precursors affording excellent spinnability, high-level oxidation-resistance, and good carbonization yields were prepared by bromination–dehydrobromination of various ratios of pyrolyzed fuel oil and coal tar pitch. The pitches exhibited spinnabilities that were much better than those of pitches prepared via simple distillation. A pitch prepared using a 1:2 ratio of fuel oil and coal tar pitch exhibited the best tensile strength. Pitch fibers of diameter 8.9 ± 0.1 μm were stabilized at 270 °C without soaking time after heating at a rate of 0.5 °C/min and carbonized at 1100 °C for 1 h after heating at 5 °C/min. The resulting carbon fibers exhibited a tensile strength, elongation, Young’s modulus, and average diameter of 1700 ± 170 MPa, 1.6 ± 0.1%, 106 ± 37 GPa, and 7.1 ± 0.2 μm, respectively.
        4,000원
        39.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Lignocellulosic materials such as agricultural residues have been identified as potential sustainable sources that can replace petroleum-based polymers. This study focused on the conversion of lignin extracted from bagasse to carbon fiber (CF) and cellulose nanocrystal (CNC). The highest extraction of lignin yield was achieved at 100 °C using 10% NaOH for 12 h. Carbon fibers were obtained by electro-spinning of bagasse lignin blended with polyvinyl alcohol (PVA) (11 wt/v %) followed by thermo-stabilization (250 °C) in an oxidizing atmosphere and further carbonization in an inert atmosphere (850 °C). Conventional hydrolysis process was used to extract cellulose nanocrystal from bagasse pulp. Morphological (scanning electron microscopy, SEM), spectral (Fourier transform infrared, FTIR) spectroscopy, elemental analysis, thermal characterization and surface area measurements have been carried out. Figures originated by SEM showed that CF ranges from 145 to 204 nm, while stabilized bagasse cellulose nanocrystal (SCNC) appeared as rod-shape like structure in the range of length 600–800 nm and diameter 5.33–19 μm. Characterization results revealed that CF exhibits microporous structure, while bagasse lignin and SCNC display mesoporous structure. In addition, the results proved that SCNC exhibits a percentage removal 71.56% for methylene blue dye in an aqueous solution.
        4,000원
        40.
        2019.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To develop flexible adsorbents for compact volatile organic compound (VOC) air purifiers, flexible as-spun zeolite fibers are prepared by an electrospinning method, and then zeolite particles are exposed as active sites for VOC (toluene) adsorption on the surface of the fibers by a thermal surface partial etching process. The breakthrough curves for the adsorption and temperature programmed desorption (TPD) curves of toluene over the flexible zeolite fibers is investigated as a function of the thermal etching temperature by gas chromatography (GC), and the adsorption/desorption characteristics improves with an increase in the thermal surface etching temperature. The effect of acidity on the flexible zeolite fibers for the removal of toluene is investigated as a function of the SiO2/Al2O3 ratios of zeolites. The acidity of the flexible zeolite fibers with different SiO2/Al2O3 ratios is measured by ammonia-temperature-programmed desorption (NH3-TPD), and the adsorption/desorption characteristics are investigated by GC. The results of the toluene adsorption/desorption experiments confirm that a higher SiO2/ Al2O3 ratio of the flexible zeolite fibers creates a better toluene adsorption/desorption performance.
        4,000원
        1 2 3 4 5