검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 136

        41.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Uniform TiO2 blocking layers (BLs) are fabricated using ultrasonic spray pyrolysis deposition (USPD) method. To improve the photovoltaic performance of dye-sensitized solar cells (DSSCs), the BL thickness is controlled by using USPD times of 0, 20, 60, and 100 min, creating TiO2 BLs of 0, 40, 70, and 100 nm, respectively, in average thickness on fluorine-doped tin oxide (FTO) glass. Compared to the other samples, the DSSC containing the uniform TiO2 BL of 70 nm in thickness shows a superior power conversion efficiency of 7.58±0.20% because of the suppression of electron recombination by the effect of the optimized thickness. The performance improvement is mainly attributed to the increased open-circuit voltage (0.77±0.02 V) achieved by the increased Fermi energy levels of the working electrodes and the improved short-circuit current density (15.67±0.43 mA/cm2) by efficient electron transfer pathways. Therefore, optimized TiO2 BLs fabricated by USPD may allow performance improvements in DSSCs.
        4,000원
        43.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aimed to identify the effects of modified low-dye taping and foot intrinsic muscle strengthening exercise on foot pressure in people with flat feet. The subjects were 12 participants with flat feet in their 20s. They were randomly divided into two groups: taping and strengthening exercise. They performed the interventions twice a week for six weeks. The taping group was applied the modified low-dye taping. The exercise group was performed foot intrinsic muscle strengthening exercise for 30 minutes. The data were measured by Foot Pressure Measurement. There was no significant difference in plantar pressure between taping group and exercise group. There was also no significant difference in all variables before and after intervention in all groups. The present study suggests that taping and exercise can change the foot pressure in patients with flat-footed.
        4,000원
        44.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구의 목적은 트리아세테이트와 흡한속건성 PET 합연사로 구성된 복합직물의 염착량 증진 및 동일색상 염색 (union dyeing)을 위한 최적 혼합염색 조건을 찾는 것이다. 이를 위하여 E-type 분산염료(C.I. Disperse red 50)와 S-type 분산염료(C.I. Disperse red 92)를 혼합하여 1욕 혼합염색으로 염색온도, 염색시간, 염료의 혼합비율에 따른 염색직물의 흡진율, 염착율, 색상 및 색차를 측정하였다. 혼합염색의 염착평형은 100℃에서 일어났으나 염색된 직물의 K/S 값과 겉보기 색상을 비교해보았을 때 트리아세테이트와 흡한속건성 PET의 색이 동일한 색으로 발현되는 온도는 120℃임을 확인하였다. 염색 시간 증가에 따른 혼합염료 흡진율과 염착량의 변화는 크게 나타나지 않았으나 염색시간이 길수록 그리고 혼합염료를 사용할 경우 균일한 색상을 얻을 수 있었다. E-type에 S-type염료의 혼합비율을 적절히 조절하여 혼합염색 하면 단독염색 보다 E-type 염료의 색상과 차이 없이 염착량을 증대시킬 수 있었다.
        4,000원
        45.
        2016.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Ni nanoparticles (NPs)-graphitic carbon nanofiber (GCNF) composites were fabricated using an electrospinning method. The amounts of Ni precursor used as catalyst for the catalytic graphitization were controlled at 0, 2, 5, and 8 wt% to improve the photovoltaic performances of the nanoparticles and make them suitable for use as counter electrodes for dyesensitized solar cells (DSSCs). As a result, Ni NPs-GCNF composites that were fabricated with 8 wt% Ni precursors showed a high circuit voltage (0.73 V), high photocurrent density (14.26 mA/cm2), and superb power-conversion efficiency (6.72 %) when compared to those characteristics of other samples. These performance improvements can be attributed to the reduced charge transport resistance that results from the synergetic effect of the superior catalytic activity of Ni NPs and the efficient charge transfer due to the formation of GCNF with high electrical conductivity. Thus, Ni NPs-GCNF composites may be used as promising counter electrodes in DSSCs.
        4,000원
        46.
        2016.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Ni nanoparticles (NPs)-graphitic carbon nanofiber (GCNF) composites were fabricated using an electrospinning method. The amounts of Ni precursor used as catalyst for the catalytic graphitization were controlled at 0, 2, 5, and 8 wt% to improve the photovoltaic performances of the nanoparticles and make them suitable for use as counter electrodes for dyesensitized solar cells (DSSCs). As a result, Ni NPs-GCNF composites that were fabricated with 8 wt% Ni precursors showed a high circuit voltage (0.73 V), high photocurrent density (14.26 mA/cm2), and superb power-conversion efficiency (6.72 %) when compared to those characteristics of other samples. These performance improvements can be attributed to the reduced charge transport resistance that results from the synergetic effect of the superior catalytic activity of Ni NPs and the efficient charge transfer due to the formation of GCNF with high electrical conductivity. Thus, Ni NPs-GCNF composites may be used as promising counter electrodes in DSSCs.
        4,000원
        47.
        2016.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We improve the energy conversion efficiency (ECE) of a dye sensitized solar cell (DSSC) by preparing a working electrode (WE) with localized surface plasmon resonance (LSPR) by inducing Au thin films with thickness of 0.0 to 5.0 nm, deposited via sputtering. Field emission scanning electron microscopy and atomic force microscopy were used to characterize the microstructure of the blocking layer (BL) of the Au thin films. Micro-Raman measurement was employed to confirm the LSPR effect, and a solar simulator and potentiostat were used to evaluate the photovoltaic properties, including the impedance and the I-V of the DSSC of the Au thin films. The results of the microstructural analysis confirmed that nano-sized Au agglomerates were present at certain thicknesses. The photovoltaic results show that the ECE reached a value of 5.34% with a 1-nm thick-Au thin film compared to the value of 5.15 % without the Au thin film. This improvement was a result of the increase in the LSPR of the TiO2 layer that resulted from the Au thin film coating. Our results imply that the ECE of a DSSC may be improved by coating with a proper thickness of Au thin film on the BL.
        4,000원
        48.
        2016.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The cobalt silicides were investigated for employment as a catalytic layer for a DSSC. Using an E-gun evaporation process, we prepared a sample of 100 nm-thick cobalt on a p-type Si (100) wafer. To form cobalt silicides, the samples were annealed at temperatures of 300 oC, 500 oC, and 700 oC for 30 minutes in a vacuum. Four-point probe, XRD, FE-SEM, and CV analyses were used to determine the sheet resistance, phase, microstructure, and catalytic activity of the cobalt silicides. To confirm the corrosion stability, we also checked the microstructure change of the cobalt silicides after dipping into iodide electrolyte. Through the sheet resistance and XRD results, we determined that Co2Si, CoSi, and CoSi2 were formed successfully by annealing at 300 oC, 500 oC, and 700 oC, respectively. The microstructure analysis results showed that all the cobalt silicides were formed uniformly, and CoSi and CoSi2 layers were very stable even after dipping in the iodide electrolyte. The CV result showed that CoSi and CoSi2 exhibit catalytic activities 67 % and 54 % that of Pt. Our results for Co2Si, CoSi, and CoSi2 revealed that CoSi and CoSi2 could be employed as catalyst for a DSSC.
        4,000원
        49.
        2016.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Octahedral Co3O4/carbon nanofiber (CNF) composites are fabricated using electrospinning and hydrothermal methods. Their morphological characteristics, chemical bonding states, and electrochemical properties are used to demonstrate the improved photovoltaic properties of the samples. Octahedral Co3O4 grown on CNFs is based on metallic Co nanoparticles acting as seeds in the CNFs, which seeds are directly related to the high performance of DSSCs. The octahedral Co3O4/CNFs composites exhibit high photocurrent density (12.73 mA/m2), superb fill factor (62.1 %), and excellent power conversion efficiency (5.61 %) compared to those characteristics of commercial Co3O4, conventional CNFs, and metallic Co-seed/CNFs. These results can be described as stemmnig from the synergistic effect of the porous and graphitized matrix formed by catalytic graphitization using the metal cobalt catalyst on CNFs, which leads to an increase in the catalytic activity for the reduction of triiodide ions. Therefore, octahedral Co3O4/CNFs composites can be used as a counter electrode for Pt-free dye-sensitized solar cells.
        4,000원
        50.
        2016.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon nanofiber (CNF) composites coated with spindle-shaped Fe2O3 nanoparticles (NPs) are fabricated by a combination of an electrospinning method and a hydrothermal method, and their morphological, structural, and chemical properties are measured by field-emission scanning electron microscopy, transmission electron microscopy, Xray diffraction, and X-ray photoelectron spectroscopy. For comparison, CNFs and spindle-shaped Fe2O3 NPs are prepared by either an electrospinning method or a hydrothermal method, respectively. Dye-sensitized solar cells (DSSCs) fabricated with the composites exhibit enhanced open circuit voltage (0.70 V), short-circuit current density (12.82 mA/cm2), fill factor (61.30%), and power conversion efficiency (5.52%) compared to those of the CNFs (0.66 V, 11.61 mA/cm2, 51.96%, and 3.97%) and spindle-shaped Fe2O3 NPs (0.67 V, 11.45 mA/cm2, 50.17%, and 3.86%). This performance improvement can be attributed to a synergistic effect of a superb catalytic reaction of spindle-shaped Fe2O3 NPs and efficient charge transfer relative to the one-dimensional nanostructure of the CNFs. Therefore, spindle-shaped Fe2O3-NPcoated CNF composites may be proposed as a potential alternative material for low-cost counter electrodes in DSSCs.
        4,000원
        51.
        2016.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We prepared polymethyl methacrylate (PMMA) beads with a particle size of 80 nm to improve the energy conversion efficiency (ECE) by increasing the effective surface area and the dye absorption ability of the working electrodes (WEs) in a dye sensitized solar cell (DSSC). We prepared the TiO2 layer with PMMA beads of 0.0~1.0 wt%; then, finally, a DSSC with 0.45 cm2 active area was obtained. Optical microscopy, transmission electron microscopy, field emission scanning electron microscopy, and atomic force microscopy were used to characterize the microstructure of the TiO2 layer with PMMA. UV-VIS-NIR was used to determine the optical absorbance of the WEs with PMMA. A solar simulator and a potentiostat were used to determine the photovoltaic properties of the PMMA-added DSSC. Analysis of the microstructure showed that pores of 200 nm were formed by the decomposition of PMMA. Also, root mean square values linearly increased as more PMMA was added. The absorbance in the visible light regime was found to increase as the degree of PMMA dispersion increased. The ECE increased from 4.91% to 5.35% when the amount of PMMA beads added was increased from 0.0 to 0.4 wt%. However, the ECE decreased when more than 0.6 wt% of PMMA was added. Thus, adding a proper amount of PMMA to the TiO2 layer was determined to be an effective method for improving the ECE of a DSSC.
        4,000원
        52.
        2016.03 구독 인증기관 무료, 개인회원 유료
        입자 크기가 약 16 및 5 nm인 두 다른 크기의 TiO2 나노입자들과 titanium tetraisopropoxide (TTIP) binder 와 ethanol 용매만으로 제조된 코팅액을 사용하여 130 oC 저온 열처리로 ITO/PEN substrate 위에 메조다공성 TiO2 박막들을 형성하였다. 이들 TiO2/ITO/PEN 박막들을 활용한 유연 염료감응 태양전지들을 제작하여 광변환 특성을 비교 연구하였다. 크기가 다른 두 TiO2 나노입자들을 각각 단독으로 사용하여 제작된 cell들의 경우에 크기가 16 nm 인 TiO2 나노입자 cell이 5 nm인 나노입자 cell에 비해 박막의 porosity가 훨씬 크고 같은 질량에서 표면적이 훨씬 넓어 광변환 효율이 훨씬 높으나 염료 흡착량에 대해 상대적으로 작은 광전류는 입자간의 연결성에 기인되며 큰 입 자에 작은 입자를 10% 정도 혼합한 경우에 표면적 증가와 함께 입자간의 연결성을 강화시켜 큰 입자 단독으로 제작 된 cell에 비해 광변환 효율이 크게 증가됨을 확인하였다.
        4,000원
        53.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Increased foot pronation causes biomedchanical changes at the lower limbs, which may result in musculoskeletal injuries at the proximal joints. Pronation rear-foot leads to plantar fasciitis, Achilles tendonitis, and posterior tibial tendonitis pathologically. According to the recent meta-analysis, They showed that therapeutic adhesive taping is more effective than foot orthoses and motion control footwear, low-Dye (LD) taping has become the most popular method used by physiotherapists. Objects: The purpose of this study was to determine the immediate effects of LD taping results in different ankle motion and ground reaction force (GRF) as before and after applied LD taping on pronated rear-foot during gait. Methods: Twenty-four participants were recruited for this study. The gait data were recorded using an 8-camera motion capture system and two force platforms. At first, the experiments were carried out that participants walked barefoot without LD taping. And then they walked both feet was applied LD taping. Results: The ankle inversion minimum was significantly greater after LD taping than before LD taping (p=.04); however, in the GRF, there were no significant differences in the inversion maximum or total motion of the stance phase (p=.33, p=.07), or in the vertical (p=.33), posterior (p=.22), and lateral (p=.14) peak forces. Conclusion: The application of taping to pronation rear-foot assists in increased ankle inversion.
        4,000원
        54.
        2015.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Co-embedded graphitic porous carbon nanofibers(Co-GPCNFs) are synthesized by using an electrospinning method. Their morphological, structural, electrochemical, and photovoltaic properties are investigated. To obtain the optimum condition of Co-GPCNFs for dye-sensitized solar cells(DSSCs), the amount of cobalt precursor in an electrospinning solutuion are controlled to be 0 wt%(conventional CNFs), 1 wt%(sample A), and 3 wt%(sample B). Among them, sample B exhibited a high degree of graphitization and porous structure compared to conventional CNFs and sample A, which result in the performance improvement of DSSCs. Therefore, sample B showed a high current density(JSC, 12.88 mA/cm2) and excellent power conversion efficiency(PCE, 5.33 %) than those of conventional CNFs(12.00 mA/cm2, 3.78 %). This result can be explained by combined effects of the increased contact area between the electrode and elecytolyte caused by improved porosity and the increased conductivity caused by the formation of a high degree of graphitization. Thus, the Co-GPCNFs may be used as a promising alternative of Pt-free counter electrode in DSSCs.
        4,000원
        55.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The organic binder-free paste for dye-sensitized solar cell (DSSC) has been investigated using peroxo titanium complex. The crystal structure of TiO2 nanoparticles, morphology of TiO2 film and electrical properties are analyzed by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Electrochemical Impedance Spectra (EIS), and solar simulator. The synthesized TiO2 nanopowders by the peroxo titanium complex at 150, 300, 400˚C, and 450˚C have anatase phase and average crystal sizes are calculated to be 4.2, 13.7, 16.9, and 20.9 nm, respectively. The DSSC prepared by the peroxo titanium complex binder have higher Voc and lower Jsc values than that of the organic binder. It can be attributed to improvement of sintering properties of TCO/TiO2 and TiO2/TiO2 interface and to formation of agglomerate by the nanoparticles. As a result, we have investigated the organic binder-free paste and 3.178% conversion efficiency of the DSSC at 450˚C.
        4,000원
        56.
        2015.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purposes of this study were 1) to determine the effects of low-dye taping on peak plantar pressure following treadmill walking exercise, 2) to determine whether the biomechanical effectiveness of low-dye taping in peak plantar pressure was still maintained following removal of the tape during treadmill walking, and 3) to determine the trend towards a medial-to-lateral shift in peak plantar pressure in the midfoot region before and after application of low-dye taping. Twenty subjects with flexible flatfoot were recruited using a navicular drop test. The peak plantar pressure data were recorded during five treadmill walking sessions: (1) un-taped, (2) baseline-taped, (3) after a 10-minute treadmill walking exercise, (4) after a 20-minute treadmill walking exercise, and (5) after removal of the taping. The foot was divided into six parts during the data analysis. One-way repeated measures analysis of variance was performed to investigate peak plantar pressure variations in the six foot parts in the five sessions. This study resulted in significantly increased medial forefoot peak plantar pressure compared to the un-taped condition (p=.017, post 10-minute treadmill walking exercise) and (p=.021, post 20-minute treadmill walking exercise). The peak plantar pressure in the lateral forefoot showed that there was a significant decrease after sessions of baseline-taped (p=.006) and 10-minute of treadmill walking exercise (p=.46) compared to the un-taped condition. The tape removal values were similar to the un-taped values in the five sessions. Thus, the findings of the current study may be helpful when researchers and clinicians estimate single taping effects or consider how frequently taping should be replaced for therapeutic purposes. Further studies are required to investigate the evidence in support of biomechanical effectiveness of low-dye taping in the midfoot region.
        4,200원
        57.
        2014.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nitrogen-doped ZnO nanoparticle-carbon nanofiber composites were prepared using electrospinning. As the relative amounts of N-doped ZnO nanoparticles in the composites were controlled to levels of 3.4, 9.6, and 13.8 wt%, the morphological, structural, and chemical properties of the composites were characterized by means of field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In particular, the carbon nanofiber composites containing 13.8 wt% N-doped ZnO nanoparticles exhibited superior catalytic properties, making them suitable for use as counter electrodes in dye-sensitized solar cells (DSSCs). This result can be attributed to the enhanced surface roughness of the composites, which offers sites for I3- ion reductions and the formation of Zn3N2 phases that facilitate electron transfer. Therefore, DSSCs fabricated with 13.8 wt% N-doped ZnO nanoparticle-carbon nanofiber composites showed high current density (16.3mA/cm2), high fill factor (57.8%), and excellent power-conversion efficiency (6.69%); at the same time, these DSSCs displayed power-conversion efficiency almost identical to that of DSSCs fabricated with a pure Pt counter electrode (6.57%).
        4,000원
        58.
        2014.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Light scattering enhancement is widely used to enhance the optical absorption efficiency of dye-sensitized solar cells. In this work, we systematically analyzed the effects of spherical voids distributed as light-scattering centers in photoanode films made of an assembly of zinc oxide nanoparticles. Spherical voids in electrode films were formed using a sacrificial template of polystyrene (PS) spheres. The diameter and volume concentration of these spheres was varied to optimize the efficiency of dye-sensitized solar cells. The effects of film thickness on this efficiency was also examined. Electrochemical impedance spectroscopy was performed to study electron transport in the electrodes. The highest power conversion efficiency of 4.07 % was observed with 12μm film thickness. This relatively low optimum thickness of the electrode film is due to the enhanced light absorption caused by the light scattering centers of voids distributed in the film.
        4,000원
        59.
        2014.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 염료감응형 태양전지를 이용하여 시간에 따른 일사량과 그에 따른 전력량의 분석을 통해 계절적 변화에 따른 온실 적용 염료감응형 태양전지의 효율에 관한 기초 자료 수집 및 분석을 목표로 하였다. 경상대 학교 소재 온실 근처(위도 35o 9' 9.20" N, 경도 128o 5' 44.90" E, 고도 52m)에 태양전지 어레이를 설치, 2012 년 8월, 10월, 11월, 2013년 2월 약 네 달 동안 태양전 지가 받는 일사량과 그에 따른 전력량을 측정 및 비교, 분석하였다. 10월의 태양전지 패널 면적에 따른 일사량이 약 1,013.03MJ, 발생된 전력량은 약 4.87kWh로 네 달 중 가장 높게 측정되었고, 11월의 패널 면적에 따른 일사량이 약 755.25MJ, 발생 전력량은 약 3.34kWh로 가장 낮게 측정되었다. 염료감응형 태양전지의 평균 효율의 경 우 8월 한 달간, 약 3.12%로 측정되었고, 10월 2.60%, 11월 2.39%, 2월 2.23%로 각각 측정되었다. 본 연구를 통해, 향후 염료감응형 태양전지의 온실 등 농업분야 적 용 시 기초자료로 활용 할 수 있을 것으로 기대된다.
        4,000원
        60.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This research verified the usefulness and practicality of citrus peel extract as a natural dye. This study dyed cotton, silk, and cotton/mulberry fiber blended fabrics using citrus peel extract, and measured the dyeability and functional property to verify their usefulness and practicality. The dyeing affinity of the citrus peel extract was measured by dyeing under alkaline conditions to determine the temperature and time for optimal dyeing conditions of the solution. The results show that a temperature and time of 60℃ and 30 minutes were optimal for dyeing cotton fabrics with citrus peel extract, 50℃ and 60 minutes for silk fabrics, and 60℃ and 60 minutes for cotton/mulberry fiber blended fabrics, respectively. In addition the results of measuring the color fastness of the cotton, silk, and cotton/mulberry fiber blended fabrics dyed with the citrus peel extract show that the color fastness was superior for washing, friction, sweat, and water. However, the color fastness for sunlight appeared to be slightly weak. In addition, it was found that fabric dyed with the citrus peel extract showed partial antimicrobial properties. The antimicrobial property appeared the greatest in the silk fabric. The cotton/mulberry fiber blended fabrics had 90% or more Staphylococcus aureus present, but the antimicrobial properties were not high in the cotton fabric. Additionally, the heavy metal content, which is harmful to the human body, appeared to be lower than standard figures, so the dye was found to be innocuous to humans. Therefore, when the results of this study are put together, citrus peel extract is sufficiently useful and practical as an ingredient for a natural dye. Moreover, there is ample possibility to develop citrus peel dyed fabrics as environmentally friendly fashion materials.
        4,000원
        1 2 3 4 5