검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 797

        41.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 콰욜라 작품에서 컴퓨터 알고리즘 기술이 주체로서, 인간이 재현한 이미지를 디지털 이미지로 재창조하는 데서 발생한 숭고적 의미와 특성을 고찰한다. 그리고 이를 통해 콰욜라 작품이 인간중심성을 비판적으로 성찰한다는 점을 살펴본다. 숭고에서 주체는 변형 되고 비결정화되어 이전과 다른 창조적 자아로 거듭난다. 숭고에서 주체의 이런 양상은 주체 로서 알고리즘 기술이 대상에 야기하는 현상과 유사하다. 알고리즘 기술은 대상을 데이터화 함으로써 대상에 창조적 잠재력을 준다. 데이터로서 비결정화 된 대상은 다른 존재들로 다시 변형되어 이전과 불일치할 가능성을 갖기 때문이다. ≪포로들 #B06 Captives #B06≫ (2014)과 ≪유적: 프로방스 Remains: Provance≫(2016)에서 알고리즘 기술은 대상을 변 형, 비결정화 하고 이전과 불일치하게 만들어 대상에 창조적 잠재력과 숭고적 특성을 준다. 그래서 인간 시각에 대한 차이를 발생시켜 인간 시각과 근본적으로 같지만 다른 형태를 지 니는 기계의 시각을 제시한다. 그리하여 알고리즘 기술은 인간이 기계의 시각을 통해 자신에 대한 메타적 보기를 가능케 한다.
        7,800원
        42.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper proposes an algorithm for the Unrelated Parallel Machine Scheduling Problem(UPMSP) without setup times, aiming to minimize total tardiness. As an NP-hard problem, the UPMSP is hard to get an optimal solution. Consequently, practical scenarios are solved by relying on operator's experiences or simple heuristic approaches. The proposed algorithm has adapted two methods: a policy network method, based on Transformer to compute the correlation between individual jobs and machines, and another method to train the network with a reinforcement learning algorithm based on the REINFORCE with Baseline algorithm. The proposed algorithm was evaluated on randomly generated problems and the results were compared with those obtained using CPLEX, as well as three scheduling algorithms. This paper confirms that the proposed algorithm outperforms the comparison algorithms, as evidenced by the test results.
        4,000원
        46.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        지각판의 움직임은 오일러 극(Euler pole)을 중심으로 하는 회전운동으로 나타낼 수 있다. 우리는 먼저 지역적 지각판의 속도자료로부터 해당 판운동의 오일러 벡터를 근사적으로 결정하는 알고리즘을 다음과 같이 개발하였다; 1) 관측된 판속도자료로부터 평균 가상 오일러 극을 먼저 구하고, 2) 평균가상극과 관측지역의 중심을 통과하는 대원 위의 점들을 각각 극으로 설정하여, 3) 얻어지는 각 임시적 가상 모델의 판운동속도와 관측속도와의 차이의 제곱들의 합을 반복하여 구한 다음, 그 값이 최소가 되도록 보간법(interpolation)으로써 오일러 벡터를 결정함. 그런데 최근 우리는 이 와 근본적 개념은 같으나(최소제곱법), 제곱오차의 합의 편미분계수가 0이 되는 조건으로부터 곧바로 오일러 벡터를 결 정하는 알고리즘을 추가적으로 개발하였으며, 이 개선된 방법으로 판운동의 오일러 벡터를 보다 더 정확하게 산출하게 되었다. 한편 이 두 가지 방법을 최근 수년간의 한반도의 GPS 지각속도자료에 각각 적용하여 한반도 지각판의 오일러 벡터를 구하였으며, 얻어진 두 결과를 비교하였다.
        4,000원
        53.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        목적 : 4차 산업혁명이 진행됨에 따라 타각적 굴절검사값, 수차 및 동공크기 등을 이용하여 최적의 안경처방값 을 도출해주는 머신러닝(machine learning)을 개발하고자 하였다. 방법: 시력에 영향을 줄 수 있는 안질환 및 전신질환이 없고 안구 수술 이력이 없는 근시안(1,000안)을 대상으로 진행하였다. I-Profilerplus(Zeiss, Berlin, Germany)를 사용하여 타각적 굴절이상도(objective-refraction) 및 안구수차(ocular wavefront-aberration), 동공 크기를 측정하였고, 자각적 굴절이상도(subjective-refraction)는 Visuphor500(Zeiss, Berlin, Germany)를 사용하여 구면 굴절력(S, Diopter), 원주 굴절력(C, Diopter), 난시 축(Ax, °)을 측정하였다. 측정 후, 파이썬(Python, version 3.10)을 이용하여 머신러닝 모델 생성 및 예측 성능을 확인하였다. 결과: 자각적 굴절이상도에서 구면 굴절력에 영향을 미치는 요인은 타각적 구면 굴절력, defocus aberration, spherical aberration, trefoil aberration 순으로 높았고, 원주 굴절력에 영향을 미치는 요인은 타각적 원주 굴 절력, defocus aberration, coma aberration, trefoil aberration 순으로 높았으며, 난시 축은 타각적 난시축만 영향을 미치는 것으로 나타났다. 구면 굴절력, 원주 굴절력, 난시 축의 자각적 굴절이상도와 머신러닝 예상값은 차이가 없는 것으로 나타났다(p=0.976, 0.948, and 0.349, respectively). 결론 : 자각적 굴절이상도를 예측하는 머신러닝 모델을 생성하였고, 해당 모델의 예측된 값과 자각적 굴절이상 도와 유의한 차이가 없는 것을 통해 예측 정확도를 확인하였으며 앞으로 개인 맞춤형 처방을 위한 정확한 안경처 방값을 도출하는데 기초자료가 될 수 있을 것으로 생각된다.
        4,000원
        54.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Degenerative arthritis is a common joint disease that affects many elderly people and is typically diagnosed through radiography. However, the need for remote diagnosis is increasing because knee pain and walking disorders caused by degenerative arthritis make face-to-face treatment difficult. This study collects three-dimensional joint coordinates in real time using Azure Kinect DK and calculates 6 gait features through visualization and one-way ANOVA verification. The random forest classifier, trained with these characteristics, classified degenerative arthritis with an accuracy of 97.52%, and the model's basis for classification was identified through classification algorithm by features. Overall, this study not only compensated for the shortcomings of existing diagnostic methods, but also constructed a high-accuracy prediction model using statistically verified gait features and provided detailed prediction results.
        4,000원
        55.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The increasing number of technology transfers from public research institutes in Korea has led to a growing demand for patent recommendation platforms for SMEs. This is because selecting the right technology for commercialization is a critical factor in business success. This study developed a patent recommendation system that uses technology transfer data from the past 10 years to recommend patents that are suitable for SMEs. The system was developed in three stages. First, an item-based collaborative filtering system was developed to recommend patents based on the similarities between the patents that SMEs have previously transferred. Next, a content-based recommendation system based on TF-IDF was developed to analyze patent names and recommend patents with high similarity. Finally, a hybrid system was developed that combines the strengths of both recommendation systems. The experimental results showed that the hybrid system was able to recommend patents that were both similar and relevant to the SMEs' interests. This suggests that the system can be a valuable tool for SMEs that are looking to acquire new technologies.
        4,200원
        56.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        새만금 내에서는 종종 식물플랑크톤이 증식하기에 알맞은 환경조건이 생성되며 일시에 식물플랑크톤 대증식이 발생하면서 조 류 관리기준을 초과하는 사례가 발생하고 있다. 이를 대비하기 위하여 과학적 예측기법을 토대로, 식물플랑크톤의 종별로 가장 효과적이 고 효율적인 녹조발생 억제 방안을 제안하기 위하여 식물플랑크톤 대증식 가능성을 예측하고, 제어할 수 있는 모델을 개발하였다. 즉, 하 천에서 유입하는 영양염(DIN, PO4-P)을 정책적으로 조절하고, 갑문운영을 통해 호 내 염분을 제어하는 것이다. 먼저 관측치로부터 인공신 경망 알고리즘을 이용해 식물플랑크톤 대증식 가능성을 예측 결과, 모델의 Kappa 수는 0.7889 ~ 1.0000의 범위로, good ~ excellent 수준이었 다. 다음으로 Garson 알고리즘을 이용하여 종별로 설명변수의 중요도를 평가하였고, 또한 DIN 및 염분 값의 변화에 따른 식물플랑크톤 대 량 증식 확률을 예측하였다. 그 결과, 각 종별로 식물플랑크톤의 대증식을 억제할 수 있는 DIN과 염분 농도를 정량적으로 예측할 수 있었 다. 따라서, 향후 새만금과 같은 거대한 인공 호수에서 식물플랑크톤의 대증식을 억제하기 위한 효율적이고 효과적인 대응방안을 마련할 수 있도록 녹조제어모델을 활용할 수 있을 것으로 판단된다.
        4,000원
        57.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study aims to develop and validate timing transition techniques for real-time traffic signal operations, departing from conventional methods based on past commuting traffic patterns. METHODS : In this study, we propose two traffic signal transition techniques that can perform transitions while minimizing disruptions within a short period. The Proposed 1 technique involves an unconditional transition within one cycle and allows for the allocation of offset changes to both the coordinated and non-coordinated phases. The Proposed 2 technique performs transitions within 1-2 cycles based on the offset change rate and considers the non-coordinated phase for allocating offset changes. RESULTS : Functional improvements of the proposed techniques were validated. For validation, simulated traffic signal transition scenarios were created, and a comparative analysis of the transition techniques was performed based on the selected analysis approaches. The results showed that the Proposed 1 technique exhibited the lowest delay during the approximated saturated transitions, whereas the Subtract technique showed the lowest delay during the non-saturated transitions. CONCLUSIONS : These findings emphasize the importance of selecting and applying appropriate transition techniques tailored to individual traffic scenarios. The proposed transition techniques provide valuable insights for improving real-time traffic signal operations, and contribute to the overall efficiency and effectiveness of traffic management in highway corridors.
        4,000원
        58.
        2023.07 구독 인증기관·개인회원 무료
        Algorithms are rapidly altering the way society operates (SIOP, 2020). Algorithms are used in modern businesses for tasks such as hiring, advising investors on financial matters, recommending new products to customers (Shankar, 2018). However, lay people frequently oppose them, a phenomenon known as algorithm aversion (e.g., Dietvorst et al., 2015). While prior research tries to address this issue by identifying cognitive and affective predictors of algorithm aversion, we seek to contribute to the algorithm aversion literature by investigating an understudied antecedent of people’s support for algorithm adoption—their cultural values (Dietvorst & Bartels, 2022).
        59.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study focuses on the development of a Last-Mile delivery service using unmanned vehicles to deliver goods directly to the end consumer utilizing drones to perform autonomous delivery missions and an image-based precision landing algorithm for handoff to a robot in an intermediate facility. As the logistics market continues to grow rapidly, parcel volumes increase exponentially each year. However, due to low delivery fees, the workload of delivery personnel is increasing, resulting in a decrease in the quality of delivery services. To address this issue, the research team conducted a study on a Last-Mile delivery service using unmanned vehicles and conducted research on the necessary technologies for drone-based goods transportation in this paper. The flight scenario begins with the drone carrying the goods from a pickup location to the rooftop of a building where the final delivery destination is located. There is a handoff facility on the rooftop of the building, and a marker on the roof must be accurately landed upon. The mission is complete once the goods are delivered and the drone returns to its original location. The research team developed a mission planning algorithm to perform the above scenario automatically and constructed an algorithm to recognize the marker through a camera sensor and achieve a precision landing. The performance of the developed system has been verified through multiple trial operations within ETRI.
        4,000원
        60.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The large process plant is currently implementing predictive maintenance technology to transition from the traditional Time-Based Maintenance (TBM) approach to the Condition-Based Maintenance (CBM) approach in order to improve equipment maintenance and productivity. The traditional techniques for predictive maintenance involved managing upper/lower thresholds (Set-Point) of equipment signals or identifying anomalies through control charts. Recently, with the development of techniques for big analysis, machine learning-based AAKR (Auto-Associative Kernel Regression) and deep learning-based VAE (Variation Auto-Encoder) techniques are being actively applied for predictive maintenance. However, this predictive maintenance techniques is only effective during steady-state operation of plant equipment, and it is difficult to apply them during start-up and shutdown periods when rises or falls. In addition, unlike processes such as nuclear and thermal power plants, which operate for hundreds of days after a single start-up, because the pumped power plant involves repeated start-ups and shutdowns 4-5 times a day, it is needed the prediction and alarm algorithm suitable for its characteristics. In this study, we aim to propose an approach to apply the optimal predictive alarm algorithm that is suitable for the characteristics of Pumped Storage Power Plant(PSPP) facilities to the system by analyzing the predictive maintenance techniques used in existing nuclear and coal power plants.
        4,000원
        1 2 3 4 5