Nitrophenol sensors have garnered interest in pharmaceuticals, agriculture, environment safety and explosives. Various methods have been proposed to detect 4-nitrophenol, but nitrophenol isomers such as 2,4-dinitrophenol (DNP) and 2,4,6-trinitrophenol have been comparatively less studied. For the first time, the present work explores graphitic nanocarbon, i.e., carbon black (CB) interface for sensing of DNP. Two reduction potentials were noted at − 0.48 and − 0.64 V for o-NO2 and p-NO2 moieties, respectively, at CB/GCE. At the same time, bare GCE (glassy carbon electrode) shows a single reduction potential at − 0.7 V. The electrocatalytic effect and adsorption ability of the interface was studied from the DNP concentration effect. Scan rate and pH studies suggest that the CB acquires four electrons for NO2 reduction by the diffusion phenomenon. A broad detection range of 10–250 μM DNP with a very low detection limit of 0.13 (o-form) and 0.15 μM (p-form) was achieved using the CB interface. The real-time applicability of the fabricated sensor was evaluated using commercially available beverages with excellent recovery values. The stability, repeatability and reproducibility of the CB interface were successfully confirmed. Comparison of the sensing parameters of the developed sensor with those reported in literature reveals excellent detection limit and response time for the CB-interfaced DNP sensor, indicating its potential for environmental and commercial applications.
광전기화학 성능을 향상시키기 위해 각 ZnO, ZnSe과 g-C3N4 소재의 장점을 살리도록 3성분계 적층 구조를 디자 인했다. 용액공정으로 FTO 기판위에서 ZnO 나노로드 어레이가 성장하도록 한 후 ZnO표면에 Se을 부착시켜 ZnO표면에 서 ZnSe층이 형성 되도록 이온 치환법을 도입하였다. ZnO/ZnSe 나노로드 위에 g-C3N4 층을 스핀코팅 한 후 각 층이 화 학적 접합이 되도록 질소 분위기 하에서 열처리를 하였다. AM 1.5G, 0.5 V 외부전압하에서 각 적층구조별로 광전기화학 적 전류밀도를 측정하였고 비교 결과 ZnO/ZnSe/g-C3N4 나노로드가 ZnO 및 ZnO/ZnSe 나노로드에 비하여 보다 높은 광 전류 밀도가 측정되었다. 수직 정렬된 ZnO 육각 프리즘형태는 큰 비표면적과 축 방향을 따라 전자 흐름을 원활히 하고, ZnSe 층은 비표면적과 광흡수 범위를 더욱 넗히는 효과를 가져왔다. 이로 인하여 ZnO/ZnSe/g-C3N4 삼원 접합 전극의 향상된 성능은 가시광선 흡수범위 확장, 전하 분리 강화 및 전자 전도도 향상으로 인한 시너지 효과에 기인되는 것으로 판단된다.
The main objective of the research was to deposit thin films of silver on a graphite carbon paste in a phosphate buffer medium using an electrochemical method. To construct a nitrofurazone detection sensor that is highly sensitive. Different manufacturing parameters, such as electrodeposition potential, pH effect, potential scan rate effect, and number of scan cycles, were examined in this section. The parameters were optimized to improve the deposited silver layers various electrocatalytic characteristics. The Nitrofurazone reduction process is diffusion controlled, as seen by the linear variation of Epc with log(v). The constructed Ag-NPs@CPE electrod has excellent electrical characteristics a large active surface area and low background with extremely high electrical conductivity, according to structural and electrochemical characterizations such as Scanning electron microscopy, X-ray diffraction (XRD) and cyclic voltammetry. The constructed sensor has a very remarkable analytical performance for nitrofurazone molecule identification, with a very low detection limit of about 10– 8 M. The detection of nitrofurazone using our Ag-NPs@CPE sensors in real samples contaminated with the antibiotic nitrofurazone, such as tap water and urine. In the selected sample, the electroanalytical findings reveal a very satisfactory recovery rate of more than 94 percent.
Electroanalytical study for the rotating cylinder electrode in molten LiCl-KCl eutectic salt (58– 42mol%) containing MgCl2 (0.1wt%) at 600°C is conducted. The researches of rotating cylinder electrode have been widely conducted for the century. The advantage of the electrode is that it can mitigate the unintended natural convection by providing a controlled diffusion boundary layer thickness. However, the experimental data for the high temperature molten salts is barely existed. The study adopts the electrochemical techniques such as cyclic voltammetry for the static cell and linear sweep voltammetry for the dynamic cell to calculate the diffusion coefficient. The peak current density and limiting current density are measured according to the scan rate. In order to evaluate the mass transfer under hydrodynamic flow condition, the revolution speeds of cylindrical electrode are varied from 10 rpm to 500 rpm which are corresponded to the Reynolds number of 4 and 185 respectively. The flow regime covers from the laminar to semi-turbulent regime (transient) as the critical Reynolds number Recrit is 200. The limiting current density shows a linear trend with the revolution speed and agrees well with the existing mass transfer correlations. For the extended flow regime, a new mass transfer correlation is suggested as the relation of non-dimensional numbers (Sh = aRebScc) based on the dimensionless analysis.
Elucidating the redox behavior of actinide elements in aqueous solution is important for the safety assessments of nuclear waste disposal. Despite ongoing endeavors for decades, some points of uranium and plutonium redox mechanism are ambiguous and unclear. In this study, the electrochemical redox behaviors of U(VI) and Pu(III and VI) ions in perchloric acid media were investigated by using a gold (Au) working electrode via cyclic voltammetry (CV) and cyclic square wave voltammetry (CSWV) with the temperature control (10–55°C). The cyclic voltammograms of U(V/VI), Pu(III/IV) and Pu(V/VI) redox couple were transformed to semi-integral form to calculate the diffusion coefficient and formal potential in the electrochemical quasi-reversibility prevailed system. The CSWV was additionally used for a more precise interpretation of the redox mechanism. From the investigation of the redox chemistry of U(VI) ions, a clear U(V/VI) redox peak and one unidentified oxidation peak appear around pH 2. With the temperature control and CSWV, the relevance of the oxidation peak and U(IV) was confirmed. In the case of voltammetry of Pu(VI) solution, Pu(V/VI) redox peak and an additional reduction peak appear. The redox behavior resposible for this additional reduction peak are also examined. The cyclic voltammograms of Pu(III) solution show a clear reversible redox reaction of Pu(III/IV) couple. With the temperature control, using the change of formal potential at ionic strength 1 M (ClO4 −), thermodynamic parameters of conditional molar enthalpy and entropy change were evaluated in this system.
Herein, a new and generic strategy has been proposed to introduce uniformly distributed graphitic carbon into the nanostructured metal oxide. A facile and generic synthetic protocol has been proposed to introduce uniformly distributed conducting graphitic carbon into the Co3O4 nanoparticles ( Co3O4 NPs@graphitic carbon). The prepared Co3O4 NPs@graphitic carbon has been drop casted onto the portable screen-printed electrode (SPE) to realize its potential application in the individual and simultaneous quantification of toxic Pb(II) and Cd(II) ions present in aqueous solution. The proposed Co3O4 NPs@graphitic carbon-based electrochemical sensor exhibits a wide linear range from 0 to 120 ppb with limit of detection of 3.2 and 3.5 ppb towards the simultaneous detection of Pb(II) and Cd(II), which falls well below threshold limit prescribed by WHO.
Generally, Au electrodes are the preferred top metal electrodes in most perovskite solar cells (PSCs) because of their appropriate work function for hole transportation and their resistance to metal-halide formation. However, for the commercialization of PSCs, the development of alternative metal electrodes for Au is essential to decrease their fabrication cost. Ag electrodes are considered one of the most suitable alternatives for Au electrodes because they are relatively cheaper and can provide the necessary stability for oxidation. However, Ag electrodes require an aging-induced recovery process and react with halides from perovskite layers. Herein, we propose a bilayer Au/Ag electrode to overcome the limitations of single Au and Ag metal electrodes. The performance of PSCs based on bilayer electrodes is comparable to that of PSCs with Au electrodes. Furthermore, by using the bilayer electrode, we can eliminate the aging process, normally an essential process for Ag electrodes. This study not only demonstrates an effective method to substitute for expensive Au electrodes but also provides a possibility to overcome the limitations of Ag electrodes.
This work describes the facile synthesis of silver nanoparticle-decorated zinc oxide nanocomposite through a simple glycol reduction method. The silver nanoparticle-decorated zinc oxide nanocomposite-based pencil graphite electrode has been validated as a perceptive electrochemical sensing podium towards nitrite. The morphology of the prepared nanocomposite has been characterized via specific spectroscopic and electrochemical techniques. The sensor exhibits a notable enhancement in the cyclic voltammetric response to nitrite oxidation at an ideal peak potential of 0.76 V in pH 6.0 acetate buffer. Under optimum conditions of nitrite directly expanded with their concentration in the range from 30 to 1400 μM with a detection limit of 14 μM.
본 연구는 나노섬유를 제조하는데 빠르고 효과적인 전기방사법을 이용하여 PVA(Polyvinyl alcohol)와 AgNO3를 혼합하여 제조한 용액을 금속산화물 기반 나노 섬유로 이루어진 투명 전극을 제조하고 그 특성을 분석하였다. PVA/AgNO3 혼합 용액을 전기방사법을 이용하여 유리기판 위에 나노 섬유 구조체 형태로 방사하여 250 ℃에서 2 시간 동안 열처리 과정을 통해 전기 전도성이 향상된 은 나노 섬유 기반 투명 전극을 제조하였다. 제조된 투명전극은 four-point probe 장비를 이용하여 전기적 특성을 분석하였으며, UV - Vis spectrophotometer 를 이용하여 제조된 투명전극의 투과도를 확인하였다. 또한, Scanning Electron Microscopy (SEM)과 Energy Dispersive Spectrometer(EDS)를 통해 은 나노 섬유의 표면 특성과 성분을 확인하였다. 이러한 분석들을 통해, 전기 방사 시간에 따른 면 저항과 투과도의 최적화된 조건을 확인할 수 있었으며, 은 나노 섬유로 이루어진 투명 전극은 전기적, 광학적, 기계적 특성이 우수하여 태양전지, 디스플레이, 터치스크린과 같은 차세대 유연 디스플레이에 적용 가능성을 보여주었다.
Activated non-graphitizable hard carbon using orange peel with mesoporous structure has been prepared by pyrolyzation at 700, 800, 900 °C using chemical activation method. The activated orange peel-derived hard carbon has been characterized for its mesoporous and disordered structure. TG-DSC gives the information for the changes about sample composition and thermal stability of the materials. Increasing the carbonization temperature for orange peel precursor using NaOH as activating agent, elevates the pore diameter, which thereby facilitating the insertion of Na+. Raman and X-ray diffraction confirms the presence of disordered carbon. The surface morphology of the material was analyzed by scanning eletron microsope and nitrogen ( N2) adsorption and desorption analysis give the morphology, mesopore size (3.374, 3.39 and 4 nm) and surace area (60.164, 58.99 and 54.327 m2/g) of the orange peel-derived hard carbon. Hence, this work strongly evidences that the biomass-derived hard carbon with good porosity and paves way of superior electrochemical performance for emerging sodium ion batteries.
Doped porous carbon materials have attracted great interest owing to their excellent electrochemical performance toward energy storage applications. In this report, we described the synthesis of nitrogen-doped porous carbon (N-PC) via carbonization of a triazine-based covalent organic framework (COF) synthesized by Friedel–Crafts reaction. The as-synthesized COF and N-PC were confirmed by X-ray diffraction. The N-PC exhibited many merits including high surface area (711 m2 g−1), porosity, uniform pore size, and surface wettability due to the heteroatom-containing lone pair of electron. The N-PC showed a high specific capacitance of 112 F g−1 at a current density of 1.0 A g−1 and excellent cyclic stability with 10.6% capacitance loss after 5000 cycles at a current density of 2.0 A g−1. These results revealed that the COF materials are desirable for future research on energy storage devices.
In this work, a simple nonenzymatic glucose sensor has been proposed based on coconut shell charcoal (CSC) modified nickel foil as working electrode in a three-electrode electrochemical cell. Charcoal was prepared by the pyrolysis of coconut shells. The most important advantages of coconut shells are cost-effectiveness and their abundance in nature. The morphology and phase of the CSC powder were characterized by scanning electron microscopy and X-ray diffraction. The electrochemical performance of the CSC powder coated Nickel foil electrode was investigated by cyclic voltammetry and chronoamperometry. The sensor shows a higher sensitivity of 2.992 mA cm−2 mM−1 in the linear range of 0.5–5.5 mM and slightly lower sensitivity of 1.1526 mA cm−2 mM−1 in the range of 7–18.5 mM glucose concentration with a detection limit of 0.2 mM. The anti-interference property of CSC powder also was investigated and found that the response of interfering species was less significant compared to glucose response. The proposed sensor offers good sensitivity, wide linear range, and a very low response to interfering biomolecules.
The carbon spheres (CSs) synthesized by an ultrasonic-spray pyrolysis method were activated for supercapacitor electrode. There are plenty of cracks on the surface of the activated carbon spheres (ACSs), which expend with increasing the activation temperature and activator dosage. The specific capacitance of ACSs increases with the activation temperature and activator dosage and reach to maximal value at certain conditions. Importantly, the ACS sample activated at relatively low activation temperature (600 °C) and 7 of mass ratio of KOH to CSs has the highest specific capacitance (about 209 F g− 1 at 50 mA g− 1 of current density) and indicates the excellent cycling stability after 1000 consecutive charge–discharge cycles. Furthermore, the graphene sheets could be found in the samples that were activated at 1000 °C. And the electrode prepared by the sample has the very low series resistance because of the excellent conductivity of the formed graphene sheets.
Most recently, graphene-related composite-modified electrode surfaces are been widely employed to improve surface interactions and electron transfer kinetics. Hydrothermally prepared strontium pyro niobate (SPN) and reduced graphene oxide/ strontium pyro niobate (RGOSPN) nanostructures reveal excellent morphology. X-ray diffraction analysis of SPN and RGOSPN agree with standard data. Thermogravimetry–differential scanning calorimetry analyses show that RGOSPN has higher thermal stability than SPN. In addition, from the polarization–electric field (P–E) loop measurements, the estimated value of remnant polarization (Pr) and coercive electric field (Ec) of SPN are 0.039 μC cm−2 and − 2.90 kV cm−1 and that of RGOSPN nanocomposite are 0.0139 μC cm−2 and − 2.04 kV cm−1. Cyclic voltammetry measurements show that RGOSPN nanocomposite manifests the possibility of electrochemical reversibility beyond long cycles without change in performance. The redox cycle reveal that RGOSPN can be used as part of a composite electrode for hybrid capacitors dynamic conditions. Moreover, the specific capacitance of SPN and RGOSPN was calculated using galvanostatic charge–discharge (GCD) technique. The observed energy density of 9.1 W h kg−1 in RGOSPN is higher when compared with previous reported values.
A carbon nanofiber was produced from the Areca catechu husk as a supercapacitor electrode, utilizing a chemical activation of potassium hydroxide (KOH) at different concentrations. One-stage integrated pyrolysis both carbonization and physical activation were employed for directly converting biomass to activated carbon nanofiber. The morphology structure, specific surface area, pore structure characteristic, crystallinity, and surface compound were characterized to evaluate the influence on electrochemical performance. The electrochemical performance of the supercapacitor was measured using cyclic voltammetry (CV) through a symmetrical system in 1 M H2SO4. The results show that the KOH-assisted or absence activation converts activated carbon from aggregate into a unique structure of nanofiber. The optimized carbon nanofiber showed the large specific surface area of 838.64 m2 g−1 with the total pore volume of 0.448 cm3 g−1, for enhancing electrochemical performance. Beneficial form its unique structural advantages, the optimized carbon nanofiber exhibits high electrochemical performance, including a specific capacitance of 181.96 F g−1 and maximum energy density of 25.27 Wh kg−1 for the power density of 91.07 W kg−1. This study examines a facile conventional route for producing carbon nanofiber from biomass Areca catechu husk in economical and efficient for electrode supercapacitor.
Vertically Aligned Carbon Nanotubes (VACNTs)-coated flexible aluminium (Al) foil is studied as an electrode for supercapacitor applications. VACNTs are grown on Al foil inside thermal Chemical Vapor Deposition (CVD) reactor. 20 nm thick layer of Fe is used as a catalyst while Ar, H2 and C2H2 are used as precursor gases. The effect of growth temperature on the structure of CNTs is studied by varying the temperature of CVD reactor from 550 °C to 625 °C. Better alignment of VACNTs arrays on Al foil is recorded at 600 °C growth temperature in comparison to other processing temperatures. Cyclic voltammetry results shows that VACNTs-coated Al foil has a specific capacitance of ~ 3.01 F/g at a scan rate of 50 mV/s. The direct growth of VACNT array results in better contact with Al foil and thus low ESR values observed in impedance spectroscopy analysis. This leads to a fast charge–discharge cycle as well as a very high value of power density (187.79 kW/ kg) suitable for high power applications. Moreover, wettability study shows that the fabricated VACNT electrode has a contact angle of more than 152° which signifies that it is a superhydrophobic surface and hence shows lower specific capacitance in comparison to reported values for VACNT array. Therefore, it is necessary to develop suitable post-processing strategies to make VACNTs hydrophilic to realize their full potential in supercapacitor applications.
In this study, the electrochemical behavior of Sm on the binary liquid Al-Ga cathode in the LiCl-KCl molten salt system is investigated. First, the co-reduction process of Sm(III)-Al(III), Sm(III)-Ga(III), and Sm(III)-Ga(III)-Al(III) on the W electrode (inert) were studied using cyclic voltammetry (CV), square-wave voltammetry (SWV) and open circuit potential (OCP) methods, respectively. It was identified that Sm(III) can be co-reduced with Al(III) or Ga(III) to form AlzSmy or GaxSmy intermetallic compounds. Subsequently, the under-potential deposition of Sm(III) at the Al, Ga, and Al-Ga active cathode was performed to confirm the formation of Sm-based intermetallic compounds. The X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) analyses indicated that Ga3Sm and Ga6Sm intermetallic compounds were formed on the Mo grid electrode (inert) during the potentiostatic electrolysis in LiCl-KCl-SmCl3-AlCl3- GaCl3 melt, while only Ga6Sm intermetallic compound was generated on the Al-Ga alloy electrode during the galvanostatic electrolysis in LiCl-KCl-SmCl3 melt. The electrolysis results revealed that the interaction between Sm and Ga was predominant in the Al-Ga alloy electrode, with Al only acting as an additive to lower the melting point.
Engineering the microstructure of the carbonaceous materials is a promising strategy to enhance the capacitive performance of supercapacitors. In this work, nanostructured Black Pearl (1500 BP) carbon which is a conductive carbon being commercially used in printing rolls, conductive packaging, conductive paints, etc. is analyzed for its feasibility as an electrode material for Electric Double-Layer Capacitors (EDLCs). To achieve that commercial Black Pearl (BP), carbon is treated with mild acid H3PO4 to remove the impurities and enhance the active sites by regulating the growth of agglomerates and creating micropores in the nano-pigments. Generally, the coalescence of nanoparticles owing to their intrinsic surface energy has tendency to create voids of different sizes that act like meso/micropores facilitating the diffusion of ions. The electrochemical performance of BP carbon before and after chemical activation is investigated in aqueous ( H2SO4, KOH and KCl) and a non-aqueous electrolyte (1 M TEMABF4 in acetonitrile) environment employing different electrochemical techniques such as Cyclic Voltammetry (CV), Galvanostatic charge/discharge (GCD) and Electrochemical Impendence Spectroscopy (EIS). The chemically activated BP carbon delivers the highest specific capacitance of ∼156 F g−1 in an aqueous electrolyte, 6 M KOH. The highest specific power, ~ 15.3 kW kg−1 and specific energy, 14.6 Wh kg−1 are obtained with a symmetric capacitor employing non-aqueous electrolyte because of its high working potential, 2.5 V.