혈관조영 및 중재적 방사선학 분야의 경우, 업무 특성상 눈의 방사선 피폭에 대한 위험성이 높다고 알려져 있으나, 현재 구분된 선량평가 및 관리가 이루어지지 않는 실정이다. 이에 본 연구에서는 시술 환경 내종사자의 눈에 대한 선량평가 및 차폐분석을 위해 첫 번째로, 시술자가 주로 위치하는 지점을 선정하고, 두 경부 팬텀 눈의 외안각 지점에 포켓선량계를 부착한 뒤 눈에 대한 피폭선량을 평가하였고, 현재 상용화된 납 안경 착용 시 차폐효과를 산정하였다. 두 번째로, 실측과 동일한 기하학적 구조 내 모의실험을 통해 눈의 피폭선량에 대한 경향성 평가와 차폐효과에 대해 분석하였다. 그 결과, 선량계를 이용한 측정의 경우, 방사선 투시촬영 시간이 증가함에 따라 누적선량이 증가하였고, 또한 시술자의 위치에 따라 각기 다른 양상을 보였다. 모의실험의 경우, 수학적 팬텀 내 눈의 수정체의 경우 각막보다 약 1.1 ~ 1.3배 높은 선량분포를 나타내는 것을 확인하였고, 납 안경의 방호효과는 눈의 각 기관별로 최소 3.7 ~ 최대 21.4% 차폐효과를 보였다.
국내 남성에게서 많이 발생하는 전립선암을 대상으로, 근접치료 시 나노입자 사용에 따른 선량을 평가하여 기초자료를 제시하고자 하였다. 선량평가는 몬테카를로 시뮬레이션 기법인 MCNPX 프로그램을 이용하였다. 선원은 국내 HDR장비에 다용하는 192Ir으로 선정하고 나노입자는 금, 가돌리늄, 산화철, 요오드를 사용하였다. 그 결과 표적장기인 전립선은 나노입자를 사용 시, 사용하지 않은 경우에 비해 모두 흡수선량이 높게 나타났다. 특히 금 나노입자가 3.13E-03 J/kg·e의 값으로 가장 높았다. 주변장기 및 주변인에 대한 선량은 나노입자 사용에 따른 차이가 크지 않은 것으로 나타났다. 나노입자 사용은 치료가능비를 상승시켜 치료효율을 증가시킬 수 있을 것으로 판단된다.
방사선 방호의 목적 중 하나는 확률적 영향을 최소화 하는 것이다. PCXMC 2.0은 몬테카를로 시뮬레이션 기반의 프로그램으로 입사표면선량을 통해 유효선량과 암의 발병확률을 예측가능하게 해준다. 그렇기 때문에 선량계에 따른 입사표면선량 측정이 특히 중요하다. 본 연구는 반도체 선량계, 일반 선량계, 유리선량계를 통해 입사표면선량을 측정하고 그에 따른 결정 장기의 유효선량과 발병 확률을 비교분석 하는 것에 목적을 두었다. 실험방법은 두개부, 흉부, 복부의 선량계 별 입사표면선량을 측정하고 PCXMC 2.0을 통해 부위 별 결정 장기의 유효선량과 암의 발병 확률을 평가하였다. 그 결과 부위 별 입사표면선량은 동일한 조건임에도 일반 선량계, 반도체 선량계, 유리 선량계 순으로 차이가 났다. 이를 토대로 유효선량과 결정 장기의 암 발병 확률을 분석한 결과 또한 일반 선량계, 반도체 선량계, 유리 선량계 순으로 차이가 났다. 결론적으로 동일한 조건임에도 사용한 선량계에 따라 유효선량과 발병 위험도는 다르게 나타났음을 알 수 있었고, 본 연구를 통해 각각의 선량계에 따른 정확한 입사표면선량 모델을 제시하는 것이 중요하다는 것을 알 수 있었다.
본 논문에서는 OSL 도트 선량계의 교정인자, 흡수선량 선형성, 피크전압 선형성, 각도 변화에 의한 흡수선량 변화를 측정하고 분석했다. 의료용 X 선발생 장치를 사용하여 조사에 노출 선량 보정 계수, 흡수선량 선형성, 피크 전압 선형성은 모두 IEC-62387-1 (2007) 기준을 만족하였다. 기준 방사선 노출과 관련하여 0도, 30도 및 60도에서 선량계 방향에 대한 기준은 -29 % (± 30 °) 및 + 67 % (± 60 °)이었다. 30도에서 측정 된 값은 기준보다 -8 % 낮고 60도에서 기준보다 -18 % 낮게 나타났다. 그러므로 OSL 도트 선량계 사용 시 방향에 따른 영향을 보정하여야 한다.
Brain Perfusion CT는 시간적 제약을 많이 받는 허혈성 급성뇌경색 환자의 관류 상태에 대한 정보를 정확하고 신속하게 제공함으로써 적절한 치료를 하는데 유용한 촬영 기법으로 임상에서 많이 촬영되고 있다. 그러나 이런 장점에도 불구하고 수정체의 피폭선량이 아주 많다는 단점이 있다. 본 연구에서는 Brain Perfusion CT 검사 시 수정체 피폭선량을 최대한 감소시키기 위한 방법으로 Bismuth 차폐체와 Position의 변화를 통하여 수정체 피폭선량의 최소화 방안을 알아보기 위한 목적으로 본 실험을 진행하였다. 팬텀(PBU-50)을 사용하여 양쪽 수정체에 TLD(TLD-100)를 올려두고 IOML에 평행, IOML에 평행(Bismuth 차폐), SOML에 평행, SOML에 평행(Bismuth 차폐)의 총 4가지 Position으로 각각 5회씩 Brain Perfusion scan을 실시하여 수정체의 선량을 측정하였다. 그리고 각각의 Position에 따른 화질 변화를 측정하기 위해 4군데에 관심영역을 정하여 CT Number와 Noise의 변화를 측정하여 비교하였다. 측정된 선량을 일원배치 분산분석한 결과 유의확률 0.000으로 Position에 따라 수정체의 피폭선량에 차이가 있다고 나타났으며, Duncan 사후검정결과에서 IOML에 평행 scan을 기준으로 SOML에 평행 scan과 SOML에 평행 scan(Bismuth 차폐)에서 각각 89.16%, 89.66%로 수정체 선량이 많이 감소하였으며, IOML에 평행 scan(Bismuth 차폐) 에서 37.12%순으로 감소하여 나타났다. 연구 결과 피폭선량은 SOML에 평행한 scan과 Bismuth를 차폐하여 SOML에 평행한 scan이 동일하게 감쇠효과가 가장 크게 나타났다. 수정체의 등가선량 선량한도와 비교하여 IOML에 평행한 scan에서 종사자와 공중의 선량을 기준으로 비교하면 각각 39.47%, 394.73%로 나타났으나, Bismuth를 차폐하여 SOML에 평행한 scan에서 각각 4.08%, 40.8%로 현저하게 줄어 들었다. 화질평가에서 모든 영상의 CT Number와 Noise측정에서 팬텀 영상검사 평가기준에 적합하게 나타났다. Brain Perfusion CT 촬영 시 차폐체를 사용하고 수정체가 조사야에 들어오지 않도록 환자의 position을 조절하는 것이 수정체 피폭을 줄이는 가장 유용한 방법이라 사료된다.
흉부 단층 합성검사(Chest Digital Tomosynthesis, DTS)시 환자 체형에 따른 0.3 mm 구리 필터의 적용 및 AEC의 감도 변화에 의한 유효선량감소 효과와 폐 결절 검출능력을 평가하여 선량 최적화 조건을 평가하고자 한다. 8개의 인공 결절을 인체 팬텀 폐 영역내에 삽입하고 0.3 mm 구리 필터 적용 유무, 감도 변화에 따라 팬텀의 DTS 영상을 각각 획득하였다. 환자 체형에 따른 비교를 위해 팬텀 사이즈를 세 그룹으로 분류하여 small size에서는 결절이 삽입된 인체 팬텀을 단독으로 사용하였고 Average size에서는 한 개의 PMMA를, Large size에서는 두 개의 PMMA를 인체팬텀 후방에 밀착하여 위치시켰다. 유효선량은 몬테카를로 시뮬레이션을 이용하여 계산 되었고 영상의 화질평가를 위해서 CNR과 SNR 측정을 통한 정량 평가와 인공결절 검출 수를 통한 검출민감도로 정성평가를 시행하였다. 모든 데이터는 통계학적으로 분석하였다. 유효선량은 Small size일 때 26 µSv, Average size 70µSv, Large size 133µSv 감소하였다. 유효선량은 0.3mm 구리 필터의 적용 여부에 따라 유의한 차이가 있었다(p<0.05). 정량적 화질 평가에서는 0.3mmCu필터 사용 시 CNR과 SNR 모두 통계적으로 유의한 차이는 없었다(p>0.05). 또한 정성적 화질평가에서도 결절 검출 민감도는 팬텀 사이즈별 전체 그룹에서 통계적으로 유의한 차이가 없었다(p>0.05). DTS에서 0.3 mmCu필터의 사용은 폐 결절 검출에서 진단적 가치를 유지하면서 환자 피폭선량 감소효과를 얻을 수 있다. 또한 실험에서 Large size 그룹의 경우 유효선량 감소 정도가 두드러진 점으로 보아 실제 체형이 큰 환자의 경우 0.3 mm Cu필터 사용은 더 높은 유효선량 감소 효과를 기대 할 수 있을 것이라 사료된다
중재적 시술은 매우 낮은 관전류를 사용함에도 불구하고 장시간 방사선 피폭으로 인해 시술자뿐만 아니 라 환자의 방사선 노출에 의한 위험도가 크다. 이에 본 연구의 목적은 뇌혈관 중재적 시술 시 시술자가 받는 선량을 측정하고 의료 방사선으로부터의 노출을 효율적으로 차단할 수 있는 차폐물질과 차폐방식을 찾아 시술자가 받는 피폭선량을 화질에 영향을 미치지 않는 범위 내에서 최소화 할 수 있는 방법을 찾는 것이다. 결과적으로, Nano Tungsten 물질로 새롭게 고안한 차폐방식을 사용하였을 때 시술자 측에서 평균 7.95% 선 량이 감소되는 것을 확인할 수 있었다. 또한, 본 연구에서 고안한 차폐체를 사용하였을 때 PSNR의 결과는 38.44 dB로 측정되었으며 이는 Nano Tungsten이 영상의 화질에 큰 영향을 끼치지 않는 것으로 확인할 수 있 었다. 결론적으로, Nano Tungsten 차폐물질은 화질에 영향을 미치지 않는 범위 내에서 시술자뿐만 아니라 환 자의 선량을 상당히 줄일 수 있음을 알 수 있었다. 위의 물질을 사용할 경우 최근 차폐물질의 이슈로 부각되 고 있는 인체 및 환경의 유해성 및 경제성에 관련한 문제점들을 해결할 수 있을 것으로 기대된다.
본 연구는 선형가속기를 이용하여 10 MV 광자선을 조사하는 과정에서 발생하는 광중성자의 선량률 변 화를 측정하고자 하였다. 또한 방사선 조사가 종료된 후 광중성자의 수명을 분석하고자 하였다. 광중성자 측정은 BF3 비례계수관을 사용하였으며, 광중성자의 선량률 측정결과를 2초 간격으로 3부분으로 나누어 분석 하였다. 측정결과 조사야 내에 금속판이 없는 경우와 납판이 존재할 때 광중성자의 발생이 가장 빠르 게 나타났으며, 최종적으로 백그라운드 수준의 선량률을 나타내는 시간은 물질의 종류와 무관하게 약 1분 40초 정도의 수명시간을 나타내었다. 따라서 광중성자가 수명을 다할 때까지의 시간에 따른 선량률은 물질 의 종류와 임계에너지에 따라 다르게 나타내었다. 그러나 최종 수명시간은 물질의 종류에 관계없이 비슷한 결과를 나타내었으므로 물질의 종류가 광중성자의 수명시간에는 크게 관여하지 않는다고 판단되어진다.
본 연구는 EBT3 필름을 이용하여 감마나이프 퍼펙션 모델의 3차원적인 선량분포 측정하고 기준값과 비 교 분석하여 표준화된 측정방법의 기초로 활용하고자 한다. 2개 종합병원에 설치된 감마나이프 퍼펙션 모 델의 선량 분포를 EBT3 필름을 이용하여 정확도와 정밀도를 평가하였다. 정확도 평가를 위해 4 ㎜ 콜리메터를 사용하여 기계적인 중심축과 선량중심축의 일치도를 측정하였다. A병원 0.098 ㎜, 0.195 ㎜ 이며 B 병원 0.229 ㎜, 0.223 ㎜ 로 허용 오차 0.3 ㎜ 이하로 측정되었다. 정밀도 평가는 4, 8, 16 ㎜ 콜리메터(collimater) 각각의 x, y, z 3차원면 에서의 반치폭(FWHM : Full Width at Half Maximum)을 이미지-제이 프로그램을 이용하여 평가하였다. A 병원은 –0.283∼0.583 ㎜, B 병원은 –0.857∼ 0.810 ㎜로 50%선 ± 1 ㎜ 이하의 기준에 적합하였다. 이미지−제이 프로그램을 이용한 선량 분포 분석의 경우 측정자 간의 오차가 발생 가능함으로 측정점에 대한 명확한 기준을 확립할 필요가 있으며, 감마나이프 방사선 수술이 시행되어지는 고선량 영역에서 사용 가능한 선량영역이 높은 필름을 이용한 치료계획과 실제 치료 조사면의 비교가 필요하다고 생각된다.
본 연구는 부가 여과판의 재질로 구리와 니켈을 선정하여 각 물질에 따라 선량과 화질의 차이를 비교 평가하였다. 먼저, 선량에 대한 실험은 흡수선량 측정으로 란도 팬텀을 이용하여 구리 및 니켈의 부가 여과판 을 None, 0.1 mm, 0.2 mm, 0.3 mm로 변화시켜 설치하고 120 kVp, 6.3 mAs의 조건으로 조사하였다. 두 번째로, 관전압 변화와 노출지수 변화에 따라 부가 여과판 두께별로 얻은 영상을 Image J 프로그램을 이용하여 SNR과 CNR값을 구하여 영상을 평가 하였다. 흡수선량 측정은 니켈이 구리보다 높게 나왔으며, 두께가 증가할수록 흡수선량은 감소하였다(p<0.05). 관전압이 증가와 노출지수 변화에 대해서도 두 영상에서 유의한 차이를 보이지 않았다(p>0.05). 결론적으로 본 연구는 부가 여과판에서 니켈은 기존의 구리에 비해 피폭선 량을 감소하면서도 현재의 영상의 질을 유지할 수 있는 물질임을 알 수 있다.
컴퓨터단층촬영 (CT:Computed Tomography)은 환자의 정확한 진단을 위해 진단참고준위인 전산화 단층촬 영 선량지표 (CTDI: Computed Tomography Dose Index)와 (DLP:Dose Length Product)의 정보를 제공한다. 그 러나 CT 장비가 제공하는 진단참고준위는 테이블 높이에 따른 선량의 변화를 제공하지 않는다. 이번 연구 는 컴퓨터단층촬영 검사 시 최적화된 이미지와 최소선량을 찾기 위하여 컴퓨터단층촬영 테이블 높이 변화 에 따른 이미지와 선량을 팬텀(PMMA: Polymethyl Methacrylate)을 사용하여 비교 평가하였다. 성인의 복부 와 같은 두께인 32 cm PMMA 팬텀을 촬영할 경우 테이블 높이에 따른 선량 변화는 거의 없었다. 그러나 이미지의 노이즈(Noise) 평가에서는 테이블 높이에 따라 노이즈 변동 폭이 크게 발생되었다. 그리고 16 cm PMMA 팬텀인 경우는 노이즈의 변화는 작지만 선량변화는 약 30 % 발생하였다. 결론적으로 컴퓨터단층촬 영 (CT:Computed Tomography)의 검사 시에는 환자의 두께에 중심에 정확하게 일치시켜야 한다. 또한 최적 화된 이미지와 최소선량으로 검사하기 위해서는 테이블 높이 설정이 중요할 것으로 사료된다.
꿈의 암치료기라고 불리는 중입자 치료는 환자의 암세포에 입사하여 암세포만을 사멸하고 사라지는데 이때 중성자 및 감마선이 발생되어 치료실 내 영상장비, 그 밖의 전자장비에 영향을 미치게 된다. 중입자 치료시설을 구축하기 위해서는 약 2,000억 원 가량의 예산이 필요하며 구축기간도 5년 이상 소요된다. 따 라서 구축 전 몬테카를로 시뮬레이션을 이용하여 치료실 내 선량 분포에 대해 관찰하여 적절한 대비를 하 는 것이 중요하다. 본 연구에서는 몬테카를로 시뮬레이션 툴인 FLUKA를 이용하여 중입자 치료 시 치료실 내 선량분포에 대해 알아보았으며 1분 치료 시 치료실 내에는 약 0.1 mSv에서 2 pSv 정도의 영향이 있을 것으로 파악되었다.
본 연구에서는 몬테카를로 전산해석법으로 K대학교 진료영상 촬영 실습실의 방사선 조사실과 발생장치 제어실 내부 공간 유효선량률 분포 계산을 수행하였다. 방사선 발생장치는 최대 관전압 150 kVp에 최대 관 전류 700 mA이다. 전산해석 결과를 이용하여 차폐문이 닫힌 경우와 열린 경우의 진료영상 촬영 실습실의 공간선량 분포를 비교 평가하였다. 결과적으로, 차폐문이 열린 경우에도 방사선 발생장치 제어실의 유효선 량률은 학생(수시출입자)의 연간 유효선량률 한도(6 mSv/y)를 초과하지 않는다는 것을 알 수 있었다. 하지 만, 차폐문이 열려있을 때의 유효선량률이 차폐문이 닫힌 경우에 비해 납유리 앞에서는 약 16배, 차폐문 앞 에서는 약 3,000배 더 높기 때문에 실습 중에 차폐문을 닫는 것이 불필요한 방사선 피폭을 크게 줄인다는 것을 알 수 있었다.
본 논문에서는 직장암 환자를 대상으로 일반적 치료방식인 3차원입체조형치료법과 선형가속기 기반의 I MRT, 그리고 토모테라피를 이용한 IMRT의 치료계획을 각각 수립하여 직장암 환자에 대한 최적의 치료법 을 비교하고자 하였다. 치료법 비교 결과 종양조직에서는 처방선량의 95% 이상의 흡수선량을 만족시키고 있었으며 정상조직인 방광, 소장, 넙다리머리뼈의 정상조직의 합병증 발생율의 기준(V40, V30, V20, V10) 을 만족하였다. 다만, 3가지의 치료법에서 선량분포측면에서 가장 효율적인 치료법은 Tomotherapy기반의 I MRT였으며 가장 낮은 효율을 보인 치료법은 3DCRT였다. 직장암의 방사선 치료시 환자의 자세재현성, 개 인적인 신체환경 등을 고려하여 가장 적합한 치료방식을 적용한다면 환자의 예후와 삶의 질에 긍정적인 효과가 나타날 것으로 사료된다.
영·유아는 사건, 사고 및 교통사고 또는 질병으로 인해 머리에 골절 및 혈관파열, 피부에 상처를 받아 병 원에 내원하여 영상의학과에서 머리 검사인 전· 후(Skull AP) 및 측면(Skull LAT) 촬영을 받게 된다. 머리검 사에서 성인 머리(Skull) 촬영은 격자를 이용하여 촬영에 적용하면 방사선 2차선을 제거하여 영상의 대조도 를 높인다. 그러나 방사선 노출조건 중 관전압을 8~10 kVp 높게 주어야 하며 환자피폭이 증가한다. 본 연 구는 영·유아 머리촬영시 격자(grid)를 이용하지 않고 동등한 영상을 얻을 수 있다면 피폭선량 감소 및 Gri d Cut off에 의한 아티팩트를 방지할 수 있어 연구해 보았다. 연구자는 방사선계측기 이용 방사선선량을 측 정 하고 의료영상평가 방법 중에서 주관적 평가(ROC,receiver operationg characteristic)을 해 보았다. 결과에 서 격자를 이용하지 않고 촬영하면 환자 피폭선량 감소와 영상 평가에서도 영·유아의 머리 촬영시 격자를 이용하지 않고 촬영을 하게 되면 머리 전·후촬영에서 0.019 mGy 와 측면촬영 0.02 mGy 피폭선량 감소가 있었고 영상평가에서도 4점을 높게 받았다. 결론으로 병원에 내원한 영·유아 머리촬영은 격자를 이용하지 않고 촬영하면 피폭 선량 감소 및 영상 아티팩트인 Grid Cut off을 방지 할 수 있고 엑스선관 수명이 연장 되리라 사료된다.
D-Shuttle (Chiyoda Technol Corporation, Tokyo, Japan) 선량계를 이용하여 개인피폭관리 및 자연방사선량 의 모니터링을 위한 기초자료를 제공하는데 연구의 목적이 있다. D-Shuttle을 이용하여 선량을 산출하였다. 선량보고서에서 400 일 노출되었을 때에 1.346 mSv 이었고, 연간선량 (annual dose per year)은 1.228 mSv/ye ar, 평균시간선량 (average dose per hour)은 0.014 μSv/hr 이었다. 국내의 개인 외부피폭선량 (1.295 mSv/year =Korea average natural individual external dose), 국내의 연간부가선량 (additional dose per year)은 -0.0663 mSv /year 이다. D-Shuttle은 방사선모니터링을 위한 개인선량계로 방사선의 검출성능 우수한 기능, 실시간 방사 선 피폭관리, 방사선 작업의 경보 기능, 효율적이고 사용이 편리한 개인 방사선선량의 피폭관리로 ALARA 에 매우 유용한 선량계로 사용할 수 있다. 방사선작업종사자와 지역주민의 방사선모니터링 측정기기로 병 원, 산업, 의료현장, 원전사고 지역과 비파괴 분야의 위험한 지역에서 방사선모니터링으로 활용될 수 있다.
위장조영검사는 위내시경검사에 비해 비침습적이고, 일시적인 변비나 복통 외에 특별한 부작용이 없어 위내시경 검사가 어려운 환자나 노약자에게 유용하며, 위의 전체 모습을 볼 수 있어 병변의 위치를 정확히 묘사할 수 있는 장점으로 현재 상부위장관 질환의 진단에 많이 이용되고 있다. 하지만 수검자의 위장조영검사에 대한 전반적인 이해 부족으로 인하여 발생되는 검사 중 부적절한 움직임과 호흡조절로 피폭선량이 증가할 가능성이 있다. 위장조영검사 수검자의 검사에 대한 이해를 도와 검사 중 적절한 협조를 유도하고, 재촬영 건수의 감소와 검사 시간의 단축, 수검자의 피폭선량을 감소시키기 위한 방법으로 위장조영검사의 검사 과정과 주의사항을 동영상으로 제작하여 검사 전 대기시간을 이용하여 시청하게 함으로써, 동영상을 이용한 사전교육이 검사시간 단축과 재촬영 건수, 피폭선량 감소에 어느 정도 효과가 있는지 조사하였다. 30대부터 80대까지 각각 20명씩 선출한 120명을 대상으로 교육 전·후의 피폭선량과 검사 시간, 재촬영 건수를 평가하였다. 그 결과 전 연령대 평균으로 나타낸 교육 전 수검자의 피폭선량은 3171.83 μGy·m², 교육 후 수검자의 피폭선량은 2931.73 μGy·m²로 나타났고, 검사시간은 교육 전 8.05 min, 교육 후 6.75 min으로 나타났으며, 재촬영 건수는 교육 전 1.68건, 교육 후 1.22건으로 나타났다. 따라서 동영상 교육을 이용하여 위장조영검사 수검자를 대상으로 시행한 위장조영검사에 대한 사전 정보제공이 위장조영검사 수검자의 검사시간 단축, 재촬영 건수와 피폭선량의 감소에 영향을 미쳤다는 것을 확인할 수 있었다.
Monte Carlo 기법을 활용하여 60, 90, 120, 150 kV와 6, 15 MV X선에서의 선량증가 효과를 평가하였다. MCNPX code를 이용하여 ICRU slab 모의피폭체를 전산모사하였으며, 금, 가돌리늄, 산화철의 선량증가 물질을 사용하였다. 입사에너지의 전자평형 지점을 고려하여 모의피폭체의 표면 및 5 cm 깊이에 5, 10, 15, 20 mg/g 농도의 물질을 삽입하였으며, 선량증가 물질이 없을 때를 바탕으로 하여 깊이에 따른 흡수에너지 변화와 선량증가효과비를 통하여 정량적 평가를 시행하였다. 선량증가 물질의 농도가 높을수록, 금, 가돌리늄, 산화철 순으로 높은 선량증가 효과를 보였으며, kV X선에서는 입사에너지가 낮을수록, 물질의 원자 내전리 퍼텐셜에 가까울수록 높은 선량증가 효과를 보였다. MV X선에서는 15 MV에 비해 6 MV에서 높은 선량증가 현상을 나타내었으며, kV X선에 비해서는 현저히 낮은 결과를 확인할 수 있었다.
경피적 추체 성형술은 최소 침습적 척추 수술로 골다공증성 압박골절, 골수종 그리고 암에 의한 척추 전 이 등에 치료방법으로 많이 사용되어 왔다. 이러한 최소침습적 시술은 환자에게 작은 수술 흉터, 통증, 출혈, 짧은 회복시간등 여러가지 장점이 많으나, 환자와 시술자가 방사선의 위험으로부터 벗어날 수 없다. 이에 본 연구의 목적은 경피적 추체 성형술을 하는 동안 방사선 조사시간의 측정과 함께 시술자와 환자의 방사선 피폭선량을 측정해 보았다. 본원에 내원한 경피적 추체 성형술 시행 대상인 환자를 3명의 마취통증의 학과 전문의가 동일한 방법으로 총 20명의 환자에게 경피적 추체 성형술을 실시하였다. 방사선 조사시간을 측정하고 전자선량측정계를 이용하여 총 6군데의 방사선 피폭량을 측정해 보았다. 환자는 직접 엑스선을 측정하였으며, 전 후면과 옆면 부위에 전자선량측정계를 위치하였고, 시술자는 환자로부터 산란되는 산란선을 측정하였으며, 납가운 바깥쪽에 위치한 갑상선, 왼쪽 가슴, 왼쪽 허벅지 그리고 납가운 안쪽에 위치한 왼쪽 가슴부위에 전자선량측정계를 위치하였다. 총 시술 시간은 19.3±3.88 min이며, 방사선에 의한 노출 시 간은 3.6±0.71 min 이었다. 환자의 피폭선량은 전후면 일 때 121.4±48.15 μSv 였으며, 측면일 때 피폭선량 은 614.7±177.14 μSv 이다. 시술자가 받은 피폭선량은 납가운 바깥쪽의 갑상선 부분이 33.7±7.30 μSv 이고, 왼쪽 가슴 부위가 49.2±15.09 μSv 이고, 왼쪽 허벅지 부위가 12.8±3.80 μSv 이며, 납가운의 안쪽 가슴에 위치한 부위의 선량계는 4.2±1.44 Sv 이였다. 경피적 추체 성형술 시행 시 방사선의 위험으로부터 벗어나기 위해 C-arm 튜브에서 환자에게 엑스선이 도달하여 산란되는 거리를 최대한 멀게 유지하여야 하며, 방사선이 조사되는 시간을 줄이고, 납가운등 보호장구를 적절히 착용하여 방사선 피폭을 줄임으로써 시술자와 환자 모두 안전한 시술이 되도록 노력하여야 할 것이다.
한국의 가장 오래된 상업 원전인 고리 1호기가 2017년에 해체가 이루어질 예정이다. 원전 해체 폐기물의 적절한 처리는 효율적인 원전해체에 있어 중요한 역할을 할 것이다. 특히, 저준위 또는 오염되지 않은 금속폐기물의 재활용은 폐기물 발생 저감은 물론 처분장의 공간을 절약하는데 기여할 것이다. 본 논문은 재활용 시스템의 개념설계와 정의된 업무 흐름에서 발생 하는 피폭 선량을 평가하는데 그 목적이 있다. 작업의 흐름과 운전 개념을 정립하기 위해 다양한 형태의 다이어그램을 설계 하였다. 선량평가에 필요한 시나리오는 개념설계를 기반으로 선정되었으며, RESRAD-RECYCLE을 이용하여 선량을 평가하였다. 이를 통하여, 결정적 시나리오 선별, 핵종 특성 및 핵종 분배가 선량에 미치는 영향을 분석하였다. 더 나아가, 선량분석은 피폭 시나리오에 대한 대체 방안 수립, 필요한 제염 및 방사선방어 프로세스 그리고 허용 방사능 검토의 정보를 제공 하는데 사용 될 수 있을 것이다.