수경 재배한 멜론의 생육과 수확 후 모의유통 시 품질 차이를 검토하였다. ‘루비볼춘추계’의 수경재배 된 멜론을 이용하여 저장 온도를 2℃와 5℃, 10℃, 20℃하여 모의유통 시 특성과 가용성고형물(SSC), 경도, 생체중 변화, 외관 등의 변화를 조사하였다. 멜론을 상온으로 유통하는 조건 하에서 저온저장에 따른 과실 특성을 본 연구에서 확인하였다. 멜론 저장 시 가용성고형물, 경도, 생체중, 외관이 저장온도에 따라 차이를 보였다. 가용성고형물은 멜론을 저온(2~5℃)에서 저장하여 모의유통 된 것이 상온(20℃)에서 다른 온도처리보다 높은 수준인 것으로 나타났다. 외관과 경도는 모의유통 중 저장 온도에 따른 영향이 지속적이지는 못하였지만 유통초기 저온(2~10℃) 저장이 외관 지수 및 경도 수치가 높은 경향이었다. 저장 온도에 따른 영향이 모의유통 시 계속 효과를 유지하지 못하여 국내 유통 시 이를 고려하여야 할 것이다. 본 연구 결과, 저장 온도에 따른 모의유통 중에 미치는 영향은 저장 직후 짧은 단기간에만 효과를 유지하여, 국내 유통 하에서 저장할 경우에는 바로 소비할 수 있도록 유도해야 할 것으로 생각된다.
This study monitored temperature using electronic sensors and developed a prediction model for compost maturity. The experiment used swine manure in a mechanical composting facility equipped with a screw-type agitator, and the composting process was conducted for 60 d during the summer season in South Korea. Four electronic temperature sensors were installed on the inner wall between the compost piles on Days 7, 14, 21, and 28 for daily temperature monitoring. Compost samples were collected daily for 60 d, and compost maturity was analyzed using the Solvita method. Multiple comparisons, correlations, and modeling were performed using the stat package in R software. The average compost pile temperatures was 39.1±3.9, 36.4±4.3, 31.3±4.5, and 35.4±8.1 on days 7, 14, 21, and 28, respectively, after composting. The average compost maturity according to the composting date was 3.61±0.60, 4.13±0.59, 4.26±0.47, and 4.32 ±0.56 on days 7, 14, 21, and 28, respectively. A significant negative correlation was observed between the compost composting periods (seven, 14, 21, and 28 d) and the temperature of all compost piles (p<0.05), where the correlation coefficients were -0.329, -0.382, -0.507, and -0.634, respectively. A significant positive correlation was observed between the compost composting periods (seven, 14, 21, and 28 d) and the maturity of the compost (p<0.05), where the correlation coefficients were 0.410, 0.550, 0.727, and 0.840, respectively. The model for predicting the maturation of the 14 d average compost pile according to the compost composting period and the average temperature for 14 d was y=0.026 x d – 0.021 x mt.x_14 d (mean temperature for 14 d) + 4.336 (R2=0.7612, p<0.001). This study can be considered a basic reference for predicting compost maturity by the proposed model using electronic temperature sensors.
목적 : 온열 안구 마사지기 사용 시 실시간으로 눈꺼풀 온도 및 눈물막 파괴 시간을 측정하여 차이를 평가하고 자 하였다.
방법 : 연구 대상은 성인 30명 (23.7±2.60세)을 대상으로 하였고 OSDI설문지 점수에 따라 건성안 그룹과 정 상안 그룹으로 나누었다(건성안 15명, 정상안 15명). 온열 안구 마사지기는 OA-MA011(OA, Seoul, Korea), OA-MA 030(OA, Seoul, Korea), DP-EM50(Caremedi, Hanam, Korea)를 사용하였고, A400 열화상카메라 (FLIR, Wilsonville, Clackamas County USA) 사용하여 착용 전과 후 1, 3, 5, 10, 15분 측정하고, 탈거 후 5, 10, 15분 시간별로 측정 후 평균값을 기록하였다. 그리고 Kekatography 5 m(OCULUS, Wetzlar, Germany)를 사용하여 마사지기 착용하기 전과 착용 15분 뒤에 눈물막 파괴 시간을 측정해서 비교 분석하였다.
결과 : 15분 착용 시 눈꺼풀 온도는 건성안 그룹은 39.77±0.69℃, 정상안 그룹은 39.57±0.77℃ 측정되었 으며, 눈꺼풀 온도 측정 시 건성안, 정상안 그룹 모두 5분 이상 착용 시 통계적으로 유의성이 있었다(p=0.033). 눈물막 파괴시간은 착용하기 전보다는 향상이 있었지만 정상범위에 못 미치는 것으로 확인하였고 건성안에서는 통 계적으로 유의성이 있었지만(p=0.041) 정상안 그룹에서는 통계적으로 유의성이 없었다(p=0.084).
결론 : 안구건조증으로 인한 개선 방법으로 안구마사지기를 사용했을 때 10분 이상 착용 시 눈꺼풀 높은 온도 에서 유지가 되었고 눈물막 파괴 시간은 15분 이상 착용 및 온도 40℃ 유지 시 눈물막 파괴 시간에 영향을 줄 수 있었다. 따라서 온열 기능의 마사지기를 사용 시 정확한 사용 방법과 눈꺼풀 온도가 유지되며 착용 시간은 충분한 상태에서 진행해야 할 것으로 사료 된다.
In this study, crystallization was effectively suppressed in Al-based metallic glasses (Al-MGs) during pulverization by cryo-milling by applying an extremely low processing temperature and using a surfactant. Before Al-MGs can be used as an additive in Ag paste for solar cells, the particle sizes of the Al-MGs must be reduced by milling. However, during the ball milling process crystallization of the Al-MG is a problem. Once the Al-MG is crystallized, they no longer exhibit glass-like behavior, such as thermoplastic deformation, which is critical to decrease the electrical resistance of the Ag electrode. The main reason for crystallization during the ball milling process is the heat generated by collisions between the particles and the balls, or between the particles. Once the heat reaches the crystallization temperature of the Al-MGs, they start crystallization. Another reason for the crystallization is agglomeration of the particles. If the initially fed particles become severely agglomerated, they coalesce instead of being pulverized during the milling. The coalesced particles experience more collisions and finally crystallize. In this study, the heat generated during milling was suppressed by using cryo-milling with liquid-nitrogen, which was regularly fed into the milling jar. Also, the MG powders were dispersed using a surfactant before milling, so that the problem of agglomeration was resolved. Cryo-milling with the surfactant led to D50 = 10 um after 6 h milling, and we finally achieved a specific contact resistance of 0.22 mΩcm2 and electrical resistivity of 2.81 μΩcm using the milled MG particles.
This study was conducted to evaluate the filtration performance according to the feed temperature composed of NaCl and the operating pressure of the brackish water reverse osmosis (BWRO) process. The temperature is known that decides the filtration performance of reverse osmosis (RO). It is noted that temperature increase activates the permeate of salts due to augment of diffusivity and mass transfer. Filtration of the lab-scale RO system was performed with constant pressure and the constant flow was simulated. The salt rejection measured by the concentration of the feed and permeate was compared with water permeability and salt permeability in the conditions containing various temperatures (5, 10, 15, 20, 25, and 30℃) and pressures (10, 12, 15, and 18 bar). An increase in feed temperature from 5 °C to 30 °C caused a 4.65% decrease in salt rejection in CSM, due to an increase in salt permeability (4.06 times) rather than an increase in water permeability (2.62 times). Specific energy consumption (SEC) was calculated by using an electricity meter set in the RO system. It was expected that the SEC by the increases in temperature and pressure decreased due to the viscosity decline of the feed and the permeate flux augment, respectively. The SEC decreased by 63.4% in CSM and by 54.3% in Nittodenko when the feed temperature increased from 5 °C to 30 °C. It discussed how to operate the optimal RO process through the effect of temperature and operating pressure and the comparison of SEC.
The temperature-dependent development of Poinsettia thrips, Echinothrips americanus was studied at eight constant temperatures (15.0, 17.5, 20.0, 22.5, 25.0, 27.5, 30.0, and 32.5±1°C), 65±5% RH and photoperiod of 16L : 8D conditions. The developmental stages were divided into egg, 1st instar, 2nd instar, pre-pupa, pupa, and adult. The total developmental time in the immature stage was 40.4 days at 15.0°C and 11.6 days at 30.0°C, and it decreased with increasing temperature. The lowest temperature of the whole immature period was 10.7°C, and the cumulative temperature to complete the entire immature period was 217.4 degree days. The optimal development temperature (Topt) for the whole immature stage was estimated to be in the range of 30.51-31.21°C. Topt for each immature stage was 31.64-35.47°C at egg, 30.02-33.08°C at 1st instar, 29.16- 34.43°C at 2nd instar, 27.63-29.21°C at pre-pupa, and 29.81-30.12°C at pupa. In the analysis of the six non-linear models, Logan 6 model was the most appropriate as Zi (Weighting Factors) was 0.18.
Perilla plant is a special crop that is used as oilseed and food in Korea. Root lesion nematodes have caused great damage to perilla plants, so for effective management of root lesion nematodes, it is necessary to understand their ecology in perilla. In this study, we investigated the effect of temperature in the development of Pratylenchus penetrans (Pp) and Pratylenchus vulnus (Pv) when the nematodes infected the perilla plant. To estimate the effect of temperature, we assessed the reproduction factor (RF); final population/initial population (Pf/Pi) of these two nematode species. We used perilla plants as inoculated hosts and investigated the density of nematodes at 10 weeks after inoculation. As a result, the RF of Pp was highest at 20°C (0.41 (1st test), 2.2 (2nd test)) followed by 25, 30, and 15°C. The RF of Pv was highest at 30°C (9.84 (1st test), 31.39 (2nd test)), followed by 25, 20, and 15°C. Comparing the RF by temperature between Pp and Pv, Pv was higher than Pp at all temperatures used in the test. This study showed the optimal development temperature of Pp was 20-25°C and Pv was 30°C, respectively.
The germination characteristics of the resting cysts of Pheopolykrikos hartmannii collected from the southern coastal sediments of Korea were studied at different temperature conditions, and the morphology and phylogeny of the germlings were examined. The resting cysts of Ph. hartmannii were round and characterized by a red accumulation body and many arrow-like spines and could germinate at temperature of 10 to 30°C. High germination rates (>90%) were observed at 15 and 20°C, indicating that the resting cysts could act as seed populations for the bloom initiation of Ph. hartmannii in Korean coastal waters in early summer or early fall. The morphology of the germlings was generally consistent with the previous description, and an apical groove characterized by a fully enclosed loop was observed. Phylogenetic analysis based on large SubUnit (LSU) rRNA gene sequences revealed that the germlings shared an identical sequence with the Korean and American isolates of Ph. hartmannii and was a sister clade of Polykrikos species.
The community temperature index (CTI) reflects the temperature and environmental preferences of the community. We investigated the distribution patterns of major aquatic insect assemblages (Ephemeroptera, Plecoptera, and Trichoptera; EPT) based on CTI in streams of South Korea. We selected unpolluted 151 study sites at upper streams (less than 3rd) with less than 1.5 mg L-1 of biochemical oxygen demand. Study sites were clustered into six groups based on the similarities of their EPT composition. All three orders showed a continuous decrease in the number of species as CTI increased, especially in Plecoptera. In addition, the functional feeding groups were also significantly changed according the CTI changes. Temperature tolerance range of each group’s indicator species varied according to the CTI of the group. Finally, changes of CTI reflected differences of EPT assemblages according to the differences of environmental condition including temperature. Therefore, CTI can be applied to the evaluation and preservation of stream ecosystems and prediction of community changes due to climate change.
This study was carried out to investigate how airborne bacteria are distributed under different temperature conditions while cultivating oyster mushrooms by setting the indoor temperature of the cultivation room to 10°C, 15°C, 20°C, 25°C, and 30°C. The surveys were conducted in April and May, respectively. Airborne bacterial concentrations were distributed in the range of 1.61 × 102 ~ 3.67 × 102 CFU/m3 in April and 5.47 × 102 ~ 7 × 103 CFU/ m3 in May. In May, the indoor air quality maintenance standard (8.0 × 102 CFU/m3) was exceeded in the 10°C, 20°C, and 25°C cultivation rooms. Bacterial concentrations increased significantly in May compared to April. Bacterial concentrations were different between the cultivation rooms at different temperatures. The difference was more pronounced in May than in April. A total of 15 genera and 20 species were isolated from the indoor air of the oyster mushroom cultivation rooms. Overall, it was most abundant in Actinomycetia. Among the species identified, Agrobacterium radiobacter, Brevundimonas vesicularis, Kocuria palustris, K. salsicia, Lysinibacillus fusiformis, and Sphingobacterium siyangense are known to affect human health. This is the first report of airborne bacteria in cultivation rooms at different temperatures used for oyster mushroom cultivation. The results of this study are expected to be used as basic data to understand the indoor environment of thermophilic mushroom cultivation facilities.
The purpose of this study was to investigate the effects of root zone temperatures (RZT) on the germination of bell peppers and tomatoes. Bell peppers and tomatoes had the highest germination rates (85% and 90%, respectively) at 25oC air temperature. Besides, the first germination of bell peppers was shifted by one day ahead. Bell peppers had the highest germination rate of 72,100, and 100%, respectively, when the RZT was adjusted to 30oC at airtemperature of 20, 25, and 30oC, and when the air temperature was adjusted to 35oC, the germination rate was the highest (70%) when the RZT was 15oC. Tomatoes had the highest germination rate at 20oC of the RZT at all atmospheric temperatures. A local cooling and heating system was established to improve the germination rate by controlling the RZT during the low and high temperature period. The optimum RZT for seedlings during the low and high temperature period was investigated.
Pleurotus species are the most consumed and cultivated mushrooms in Korea. Although oyster mushrooms (P. ostreatus) can be cultivated automatically, their storability is slightly lower than that of king oyster mushrooms (P. eryngii) and winter mushrooms (Flammulina velutipes); therefore, the export proportion of oyster mushrooms is very low. Since Korean mushrooms are highly preferred across Southeast Asian, the export of oyster mushrooms in the form of complete substrates is expected to be more promising than that of fresh mushroom. Here, 1 and 2.5 kg complete substrates of P. ostreatus ‘Soltari’ and P. sajor-caju ‘Sambok’ were prepared and stored at different temperature from 0 to 15°C for 10 days. Thereafter, the formation of fruiting bodies was induced. Since the 2.5 kg complete substrates required 70 days of incubation, their mycelia were at an advanced age and their fruiting bodies did not grown normally. When 70%-incubated complete substrates were stored at 5–10°C, the growth was faster and more uniform and stable fruiting bodies were formed. Export test of complete substrates to Vietnam using distribution containers set at 0°C and 15°C revealed that the growth period was shortened by 1–2 days when the distribution containers were set at 15°C and the yield of ‘Soltari’ increased by approximately 10%. In addition, even though the yield of ‘Sambok’ was similar between treatments at 0°C and 15°C, the quality of fruiting bodies from 15°C-distributed complete substrates was much better than that of those from 0°C-distributed substrates.
To elucidate how cultivation temperature affected various traits including pileus color, yield and morphology of Pleurotusspp. Main results were as follows. Pileus lightness of all cultivars of Pleurotustested became higher as cultivation temperature increased, while those of Santari, Hwang-geumsantari and Sunjung at 21oC were lower than at 18oC. Redness and yellowness of pileus decreased as cultivation temperature increased; those of chromatic pileus cultivars showed noticeable difference. Yellowness of cultivar with chromatic pileus was higher than that of cultivar with achromatic pileus. Yield was increased as cultivation temperature increased, Wonhyeung 1ho; low temperature favored cultivar showed high yield when it was cultivated at low temperature andno fruiting body at 21oC. Valid number of stipes were generally higher at 18oC, and its correlation coefficient with yield was low. Length and stipe thickness changed consistently (larger and thicker) upon cultivation temperature; the coefficient of determination(R2) 0.514 for lengthof Heuktari and 0.963for stipe thickness of Santari were high. Correlation coefficient of one trait was highly related with multiple traits. In the future, we will conduct research on the changes of expressed genes involved in the pigments for pileus color by RNA expression analysis.
목적 : 온도감응성 나노구조체를 제조하고 이를 적용하여, 보관시에는 항생제가 용출되지 않고, 안구착용시에 만 온도감응성으로 항생제를 용출하는 스마트 콘택트렌즈를 제조하고자 한다.
방법 : 에멀젼중합하여 p(NIPAAm)-기반의 나노구조체를 합성하였고, 이를 샌드위치 공법을 통해 콘택트렌즈 에 도입하였다. Soaking 방법을 통해 항생제인 levofloxacin(LVF)를 콘택트렌즈에 탑재하여 온도에 따라 항생제 용출 특성을 분석하였다.
결과 : sodium n-dodecyl sulfate (SDS) 마이셀 템플레이트를 활용한 에멀젼중합을 통해 20-40 nm 크기의 온도감응형 p(NIPAAm)-기반의 나노구조체를 합성하였고 이는 TEM과 입도분석기를 통해 확인하였다. 샌드위치 공법을 통해 콘택트렌즈에 나노구조체를 도입하였고, soaking 방법을 통해 항생제를 렌즈안의 나노구조체에 탑재 하였다. 25 oC와 35 oC에서 각각 항생제의 방출 특성을 분석하였다. 상온에서는 항생제를 3 ug 이내로 방출하였 지만, 35 oC에서는 2시간이내에 대부분의 항생제를 방출하였고 10 ug까지 방출하였다.
결론 : 본 연구에서는 온도감응형 나노구조체를 합성하고, 이를 콘택트렌즈에 적용 및 항생제를 탑재하여, 온 도감응형 스마트 항생제용출 콘택트렌즈를 제조하였다. 온도감응형 나노구조체는 콘택트렌즈안에서 항생제를 성 공적으로 탑재할 수 있었고, 상온에서 상당량의 항생체를 보관하고, 온도증가시 10 ug까지의 많은 양의 항생제를 방출하였다. 본 연구결과는 약물전달용 스마트 안과의료기기 및 콘택트렌즈의 개발 및 상용화에 큰 역할을 할 것 으로 기대된다.
The function of coolant in machining is to reduce the frictional force in the contact area in between the tool and the material, and to increase the precision by cooling the work-piece and the tool, to make the machining surface uniform, and to extend the tool life. However, cutting oil is harmful to the human body because it uses chlorine-based extreme pressure additives to cause environmental pollutants. In this study, the effect of cutting temperature and surface roughness of titanium alloy for medical purpose (Ti-6Al-7Nb) in eco-friendly ADL slot shape machining was investigated using the response surface analysis method. As the design of the experiment, three levels of cutting speed, feed rate, and depth of cut were designed and the experiment was conducted using the central composite planning method. The regression expressions of cutting temperature and surface roughness were respectively obtained as quadratic functions to obtain the minimum value and optimal cutting conditions. The values from this formula and the experimental values were compared. As a result, this study makes and establishes the basis to prevent environmental pollution caused by the use of coolant and to replace it with ADL (Aerosol Dry Lubricant) machining that uses a very small amount of vegetable oil with high pressure.
PURPOSES : Owing to industrial development, the occurrence of continuous environmental damage such as abnormal weather is accelerating because of a rapid increase in carbon emissions. Therefore, various efforts are expended worldwide to realize a low-carbon ecofriendly society. In the construction industry, various efforts have been realized to reduce environmental pollution such as greenhouse gas emissions, for example by introducing eco-friendly materials and reducing industrial waste. In this study, an asphalt pavement technology that can reduce production and construction temperatures by more than 60 °C is developed to reduce the amount of carbon generated in the asphalt industry.
METHODS : The performance of a half-warm asphalt binder developed using thermoplastic elastomers and low-temperature additives was assessed. In addition, the change in the quality of a mixture due to the use of the half-warm asphalt binder was evaluated.
RESULTS : As the amount of thermoplastic elastomer used increases, the performance grade of the asphalt binder increases as well. When 3% or more of the elastomer is incorporated, the target performance grade of the asphalt binder is satisfied. In addition, by incorporating the thermoplastic elastomer and a low-temperature additive, the overall moisture and rutting resistance increased even at relatively low production and compaction temperatures.
CONCLUSIONS : Additional measures to stabilize quality and improve economic feasibility will present a new paradigm for investigations into eco-friendly asphalt concrete pavements.