검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 154

        81.
        2018.11 구독 인증기관·개인회원 무료
        본 연구에서는 고분자인 polyacrylonitrile (PAN) 고분자에 산화 그래핀(Graphene Oxide, GO)을 첨가하여 전기방사법을 통해 나노섬유 복합막(GO-PAN)을 제조하였으며, 과량의 GO를 첨가하기 위해 표면개질 전략을 사용하였다. 계면활성제를 사용하여 GO의 표면을 간단히 변형하면 GO의 안정성 및 분산도 증가로 인해 최종적으로 분리막에 필러의 함량을 3wt%까지 증가시켰다. 이렇게 변형된 GO(mGO)의 PAN 나노섬유막으로의 도입은 원래의 PAN 나노섬유막과 GO-PAN 막에 비해 향상된 친수성과 기계적 강도를 가진다. 따라서 나노필러의 표면 개질은 최종 복합막의 성능에 영향을 미치며 이는 GO의 분산도와 상관관계가 있는 것으로 보인다.
        82.
        2018.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        3D프린팅 기술은 산업적 응용을 넘어서 기계 설비 및 각종 장비의 부품생산뿐만 아니라 의료, 식품, 패션에 이르기까지 많은 시제품들의 개발 및 연구가 진행되고 있다. 3D 프린팅 기반 기술의 적용사례를 볼 때 정밀도와 제작 속도 측면에서도 다른 산업에 충분이 활용될 수 있는 기술의 개발이 보고되고 있으나, 아직까지는 시제품 위주로 이용되고 있으며, 향후 3D 프린팅 기술은 4차산업혁명과 관련하여 광범위한 분야에서 응용될 수 있는 완성품이나 부품제작에 이용될 것으로 예상된다. 본 연구에서는 탄소나노 재료중 대표적으로 많이 이용되는 환원그래핀 [rGO(reduced graphene oxide)]과 전도성 고분자중 생체 친화적인 특성을 갖는 폴리피롤[Ppy(Polypyrrole)]의 복합체를 생분해성 고분자인 폴리카프로락톤 [PCL(polycaprolactone)]과 혼합하여 3D 프린팅용 전도성 레진을 개발하고자 하였다. 결과로, 폴리피롤과 환원그래핀 각각 5 wt%, 0.75 wt% 에서 최적의 전기적 특성을 나타내었으며, 환원그래핀의 농도에 따른 표면분석에서도 이와 부합하는 결과를 확인 할 수 있었다. 본 연구를 통하여 제조된 전도성 레진은 3D 프린팅 뿐만 아니라, 다른 산업분야의 전자재료에도 적용이 가능할 것으로 사료된다.
        4,000원
        83.
        2018.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present study aimed to prepare a novel efficient flame retardant additive for polypropylene. The new flame retardant was prepared by chemical grafting of melamine to graphene oxide with the aid of thionyl chloride. Fourier-transform infrared spectroscopy and thermogravimetric analysis proved that melamine had been successfully grafted to the graphene oxide. The modified graphene oxide was incorporated into polypropylene via solution mixing followed by anti-solvent precipitatio. Homogeneous distribution as well as exfoliation of the nanoplatelets in the polymer matrix was observed using transmission electron microscopy. Thermogravimetric analysis showed a significant improvement in the thermo-oxidative stability of the polymer after incorporating 2 wt% of the modified graphene oxide. The modified graphene oxide also enhanced the limiting oxygen index of the polymer. However, the amount of improvement was not enough for the polymer to be ranked as a self-extinguishing material. Cone calorimetry showed that incorporating 2 wt% of the modified graphene oxide lowered total heat release and the average production rate of carbon monoxide during burning of the polymer by as much as 40 and 35%, respectively. Hence, it was concluded that the new flame retardant can retard burning of the polymer efficiently and profoundly reduce suffocation risk of exposure to burning polymer byproducts.
        4,000원
        84.
        2018.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An imprinted potentiometric sensor was developed for direct and selective determination of gabapentin. Sensor is based on carbon paste electrode adapted by graphene oxide that is decorated with silver nanoparticles and mixed with molecularly imprinted polymers nanoparticles using gabapentin as a template molecule. The synthesized nanoparticles were characterized by Fourier transmission infrared spectroscopy, transmission electron microscopy and X-ray diffraction. Under optimal experimental conditions, the studied sensor exhibited high selectivity and sensitivity with LOD of 4.8×10–11 mol L–1. It provided a wide linearity range from 1×10–10 to 1×10–3 mol L–1and high stability for more than 3 mo. The sensor was effectively used for the determination of gabapentin in pharmaceutical tablets and spiked plasma samples.
        4,600원
        85.
        2018.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A citric acid functionalized graphene oxide nanocomposite was successfully synthesized and the structure and morphology of the nanocatalyst were comprehensively characterized by Fourier transform infrared spectroscopy, energy-dispersive X-ray analysis, X-ray diffraction patterns, atomic force microscopy images, scanning electron microscopy images, transmission electron microscopy images, and thermogravimetric analysis. The application of this nanocatalyst was exemplified in an important condensation reaction to give imidazole derivatives in high yields and short reaction times at room temperature. The catalyst shows high catalytic activity and could be reused after simple work up and easy purification for at least six cycles without significant loss of activity, which indicates efficient immobilizing of citrate groups on the surface of graphene oxide sheets.
        4,000원
        86.
        2018.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To formulate folate receptor (FR)-specific graphene-based electrochemical electrodes, a folic acid (FA) derivative attached with two pyrene molecules on the glutamate tail of FA was synthesized. The resulting pyrene-functionalized FA (FA-Py) presented the spontaneous noncovalent binding on chemically reduced graphene oxides (rGO) through an π-π interaction. Ultrathin morphology, high water-resistance, and preservation of intact FR-specific pteroates from the rGO/FA-Py assembly allow this assembly to be exploited as robust and FR-specific electrochemical electrode materials. The limits of detecting rGO/FA-Py modified electrodes were found to be as low as 3.07 nM in FR concentrations in cyclic voltammetry analysis.
        4,000원
        87.
        2018.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Graphene is an interesting material because it has remarkable properties, such as high intrinsic carrier mobility, good thermal conductivity, large specific surface area, high transparency, and high Young’s modulus values. It is produced by mechanical and chemical exfoliation, chemical vapor deposition (CVD), and epitaxial growth. In particular, large-area and uniform single- and few-layer growth of graphene is possible using transition metals via a thermal CVD process. In this study, we utilize polystyrene and boron oxide, which are a carbon precursor and a doping source, respectively, for synthesis of pristine graphene and boron doped graphene. We confirm the graphene grown by the polystyrene and the boron oxide by the optical microscope and the Raman spectra. Raman spectra of boron doped graphene is shifted to the right compared with pristine graphene and the crystal quality of boron doped graphene is recovered when the synthesis time is 15 min. Sheet resistance decreases from approximately 2000 Ω/sq to 300Ω/sq with an increasing synthesis time for the boron doped graphene.
        4,000원
        88.
        2018.05 구독 인증기관·개인회원 무료
        Membrane fabrication is a critical area that hampers forward osmosis (FO) technology from industrialization. Herein, electrospun poly(vinyl alcohol) (PVA) nanofiber (NF) was used as a support layer for thin film composite (TFC) FO membrane. The PVA NF was incorporated with sulfonated graphene oxide (sGO). The oxygenous-rich sGO enhanced the hydrophilicity and mechanical strength of PVA NF as revealed by contact angle and tensile strength measurements, and pure water flux. On this support, the active polyamide layer was formed through interfacial polymerization. Meanwhile, FO performance of sGO/PVA TFC membrane is currently being evaluated. This work was supported by NRF of Korea funded by the Ministry of Science and ICT (2016R1A2B1009221 and 2017R1A2B2002109) and Ministry of Education (2009-0093816 and 22A20130012051 (BK21Plus)).
        89.
        2018.05 구독 인증기관·개인회원 무료
        본 연구에서는 폴리아미드 층 내에 그래핀 옥사이드를 첨가시킴으로써 피페라진 기반 나노여과막의 내산성을 높이고자 하였다. 50% 황산 용액에 나노여과막을 침지시키며 주기적으로 MgSO4 염제거율을 확인한 결과, 그래핀 옥사이드 함유 나노여과막의 경우 95% 이상으로 염제거율을 유지한 기간이 대조군에 비해 4.7배로 길어졌다. 이에 반해, 산화 탄소 나노 튜브는 그래핀 옥사이드와 비슷한 화학적 특성을 가지고 있음에도 나노여과막에 첨가했을 때 내산성에 큰 효과를 나타내지 못하였다. 이에 그래핀 옥사이드의 화학적 성질에서 기인하는 폴리아미드 돌출 희생층이나 폴리아미드와의 수소결합보다 형태적 특성에서 기인하는 장벽 효과가 내산성 향상에 가장 주요한 역할을 했다고 여겨진다.
        90.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this research, a novel and efficient quinoline thioacetamide functionalized magnetic graphene oxide composite (GO@Fe3O4@QTA) was synthesized and utilized for dispersive magnetic solid phase preconcentration of Cd(II) and Ni(II) ions in urine and various food samples. A number of diverse methods were employed for characterization of the new nanosorbent. The design of experiments approach and response surface methodology were applied to monitor and find the parameters that affect the extraction performance. After sorption and elution steps, the concentrations of target analytes were measured by employing FAAS. The highest extraction performance was achieved under the following experimental conditions: pH, 5.8; sorption time, 6.0 min; GO@Fe3O4@QTA amount, 17 mg; 2.4 mL 1.1 mol L-l HNO3 solution as the eluent and elution time, 13.0 min. The detection limit is 0.02 and 0.2 ng mL-1 for Cd(II), and Ni(II) ions, respectively. The accuracy of the new method was investigated by analyzing two certified reference materials (sea food mix, Seronorm LOT NO 2525 urine powder). The interfering study revealed that there are no interferences from commonly occurring ions on the extractability of target ions. Finally, the new method was satisfactorily employed for rapid extraction and determination of target ions in urine and various food samples.
        4,000원
        92.
        2018.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present work, capability of thymolphthalein-grafted graphene oxide, which was successfully synthesized in this study, in stabilization of polypropylene against thermal oxidation were investigated and compared with that of SONGNOX 1010, a commercially used phenolic antioxidant for the polymer. The modified graphene oxide were incorporated into polypropylene via melt mixing. State of distribution of the nanoplatelets in the polymer matrix was examined using scanning electron microscopy and was shown to be homogeneous. Measurements of oxidation onset temperature and oxidative induction time revealed that thymolphthalein-grafted graphene oxide modifies thermo-oxidative stability of the polymer in the melt state remarkably. However, the efficiency of the nanoplatelets in stabilization of polypropylene against thermal oxidation in melt state was shown to be inferior to that of SONGNOX 1010. Furthermore, oven ageing experiments followed by Fourier transform infrared spectroscopy showed that the modified graphene oxide improves thermo-oxidative stability of the polymer strongly in the solid state, so that its stabilization efficiency is comparable to that of SONGNOX 1010.
        4,000원
        93.
        2018.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Gold functionalized graphene oxide (GOAu) nanoparticles were reinforced in acrylonitrilebutadiene rubbers (NBR) via solution and melt mixing methods. The synthesized NBR-GOAu nanocomposites have shown significant improvements in their rate of curing, mechanical strength, thermal stability and electrical properties. The homogeneous dispersion of GOAu nanoparticles in NBR has been considered responsible for the enhanced thermal conductivity, thermal stability, and mechanical properties of NBR nanocomposites. In addition, the NBR-GOAu nanocomposites were able to show a decreasing trend in their dielectric constant (ε´) and electrical resistance on straining within a range of 10–70%. The decreasing trend in ε´ is attributed to the decrease in electrode and interfacial polarization on straining the nanocomposites. The decreasing trend in electrical resistance in the nanocomposites is likely due to the attachment of Au nanoparticles to the surface of GO sheets which act as electrical interconnects. The Au nanoparticles have been proposed to function as ball rollers in-between GO nanosheets to improve their sliding on each other and to improve contacts with neighboring GO nanosheets, especially on straining the nanocomposites. The NBR-GOAu nanocomposites have exhibited piezoelectric gauge factor (GFε´) of ~0.5, and piezo-resistive gauge factor (GFR) of ~0.9 which clearly indicated that GOAu reinforced NBR nanocomposites are potentially useful in fabrication of structural, high temperature responsive, and stretchable strain-sensitive sensors.
        4,500원
        94.
        2017.11 구독 인증기관·개인회원 무료
        Recently, Graphene Oxide (GO) has extensively studied as a membrane material due to its 2D structure and high CO2 sorption property, however, GO membrane still has challenging issues; low gas permeability to apply to practical system and low stability under dry condition. In this study, we introduced GO as a nanofiller in CO2-philic polymer matrix because GO has molecular sieving property and 2D structure. First, we mixed two kinds of PEO-containing polymers by controlling the ratio of free volume in polymer networks to increase the permeability, and then, we added GO in the mixed polymer matrix for improving the CO2/N2 selectivity. Finally, we fabricated GO-incorporated mixed matrix membranes with high CO2/N2 separation performance beyond the upper bound. High long-term stability and high CO2/N2 selectivity were also achieved in mixed gas system.
        95.
        2017.11 구독 인증기관·개인회원 무료
        Separation of light olefin and paraffin element is one of the most crucial issuses in petrochemical industry due to its profitable potential as precursor of petrochemical products, but facing technical predicament from similar physicochemical properties of two components. Membrane technology is considered as a good alternative for current cryogenic separation, however, current olefin/paraffin separation membranes are suffered from generally low permeability and selectivity, as well as its durability problem. Here, we have synthesized mixed matrix composite membrane using polyimide-based ZIF-8/graphene oxide 2-D nanocomposite, presenting high propylene/ propane separation performance and long-term stability.
        96.
        2017.11 구독 인증기관·개인회원 무료
        본 연구에서는 그래핀 함량에 따른 고분자 나노섬유의 물리적 특성 변화에 대해 연구하였다. 전기방사법으로 GO PAN 나노섬유 복합체 막을 제조하였으며, 접촉각⋅SEM⋅인장강도에 관한 실험을 진행하였다. GO+계면활성제를 이용 하여 나노섬유에 존재하는 GO의 함량을 증가시켰다. 제조한 나노섬유의 경우 기존의 나노섬유보다 강한 기계적 강도를 나타내었다. 이러한 결과를 바탕으로 수처리 분리막의 연구 기초자료로 활용될 수 있을 것으로 기대된다.
        98.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Different phytochemicals obtained from various natural plant sources are used as reduction agents for preparing gold, copper, silver and platinum nanoparticles. In this work a green method of reducing graphene oxide (rGO) by an inexpensive, effective and scalable method using olive leaf aqueous extract as the reducing agent, was used to produce rGO. Both GO and rGO were prepared and investigated by ultraviolet and visible spectroscopy, Fourier-transform infrared, scanning electron microscopy, atomic force microscopy, thermogravimetric analysis, cyclic voltammetry, X-ray photoelectron spectra, electrochemical impedance spectroscopy and powder X-ray diffraction.
        4,000원
        99.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We studied the basic properties and fabrication of reduced graphene oxide (rGO) prepared using eco-friendly reduction agents in the graphene solution process. Hydrazine is generally used to reduce graphene oxide (GO), which results in polluting emissions as well as fixed nitrogen functional groups on different defects in the graphene sheets. To replace hydrazine, we developed eco-friendly reduction agents with similar or better reducing properties, and selected of them for further analysis. In this study, GO layers were produced from graphite flakes using a modified Hummer’s method, and rGO layers were reduced using hydrazine hydrate, L-ascorbic acid, and gluconic acid. We measured the particle sizes and the dispersion stabilities in the rGO dispersed solvents for the three agents and analyzed the structural, electrical, and optical properties of the rGO films. The results showed that the degree of reduction was in the order L-ascorbic acid ≥ hydrazine > glucose. GO reduced using L-ascorbic acid had a sheet resistance of 121 kΩ/sq, while that reduced using gluconic acid showed worse electrical properties than the other two reduction agents. Therefore, L-ascorbic acid is the most suitable eco-friendly reduction agent that can be substituted for hydrazine.
        4,000원
        100.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 graphene oxide (GO)를 polyacrylonitrile (PAN)에 첨가하여 전기방사법을 이용해 나노섬유 복합막 을 제조한 뒤 물리적 특성을 관찰하였다. GO의 제조는 개선된 Hummer’s 방법을 이용하였으며, 표면처리가 되지 않은 GO의 경우 0.5 wt% 이상에서 전기방사가 이루어지지 않았다. GO의 안정성 및 분산도 증가를 개선하기 위해 계면활성제를 이용하 여 GO의 표면처리를 하였다. 표면처리가 된 GO를 사용하여 나노섬유 복합막의 GO의 함량을 0.5 wt% 이상 첨가할 수 있었 다. 특히, 표면처리가 된 GO가 첨가된 나노섬유 복합막은 향상된 물리적 특성을 가지며, 이는 나노섬유 분리막 내의 GO의 분산도와 상관관계가 있는 것으로 보인다.
        4,000원
        1 2 3 4 5