검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 178

        121.
        2017.05 서비스 종료(열람 제한)
        폐시멘트, 폐콘크리트, 제강 슬래그, 폐수 등을 포함하여 다양한 폐기물들이 여러 산업으로부터 배출되고 있다. 그런데 이러한 폐기물들은 Mg2+ 이온, Ca2+ 이온을 다량 포함하고 있다고 알려져 있다. 폐기물 처리 시 이러한 금속 이온을 활용한다면 MgCO3, CaCO3 등 다른 유용한 물질로 전환시킬 수 있다. 이를 위해 지구온난화를 일으키는 주요 원인으로 알려진 이산화탄소를 사용할 수 있고, 이는 이산화탄소 저감 및 폐기물 처리를 동시에 해결할 수 있을 것으로 보인다. 본 연구에서는 CO2의 용이한 전달을 돕기 위한 습식 흡수제에 대해 제안하고 Henry constant, Diffusivity, 총괄반응속도상수(kov)를 측정하였다. 흡수제는 7 wt% 암모니아, 3 wt% ʟ-Arginine, 1 wt% 부식방지제(Imidazole과 1,2,3-Benzotriazole)를 물에 녹여 제조하였다. 암모니아는 기존에 습식흡수제로 사용되던 MEA보다 저렴한 가격을 가지고 있으며 CO2 흡수 능력 또한 우수하다고 알려져 있다. 최근 아미노산은 우수한 CO2 흡수능력과 친환경적인 특성으로 많은 연구가 진행되고 있으며 두 종류의 부식방지제는 암모니아에 의해 발생할 수 있는 플랜트 장비의 부식을 방지하기 위해 첨가되었다. 303.15 K에서 333.15 K의 온도에서 실험이 진행되었으며 실험 결과와 CO2/N2O analogy를 이용해 각 값을 계산하였다.
        122.
        2016.12 KCI 등재 서비스 종료(열람 제한)
        As industry continues to develop, the contents of various recalcitrant substances that are not removed by conventional wastewater treatment have increased in modern society. The metal working fluids (MWFs) used in the metal working process contain chemical substances, such as mineral oils, anticorrosive agents, extreme-pressure additives, and stabilizers, as well as high concentrations of organics and ammonia-nitrogen. Accordingly, MWFs are required to develop advanced treatments to conserve hydro-ecological resources. This study investigated the removal efficiency of ammonia nitrogen from MWFs according to operating time, applied voltage, and NaCl concentration using a Ti/IrO2 electrode in a batch-type reactor. The experimental results showed that ammonia-nitrogen removal efficiencies without NaCl were 89% and 92% when voltage was adjusted to 15 and 20 V for 60 min and removal efficiency was 90% at 25 V for 40 min. Removal efficiencies of 10 mM NaCl were 4% and 2% greater than those of not adding NaCl at 15 V for 50 min and 20 V for 30 min.
        123.
        2016.11 서비스 종료(열람 제한)
        가축분뇨내 함유된 총 질소 농도는 3,000~6,000 mg/L 수준이며 이중 80%이상이 암모니아성 질소로 존재하기 때문에 호기성 액비화 과정에서 질산화 처리시간이 길고 탈질과정에서 탄소원의 부족 현상이 발생하여 정화처리가 용이하지 않다. 공동자원화 설비에서 현재 운영 중인 가축분뇨의 질소 변화특성을 살펴보면 농도 변화폭이 크고 이에 따른 대응 가능한 처리 및 회수 기술이 필요하다. 기존 암모니아 탈기법은 전통적인 암모니아 회수방법이나 pH를 10.5이상 유지시키면서 20℃에서의 공기요구량이 2,400 m³-air/m³-water 필요하여 운전비용이 15,000원/톤을 초과하기 때문에 경제성이 낮다. 최근 이온교환율이 높은 흡착제를 이용하는 회수기술이 개발 중이나 가축분뇨에 함유된 암모니아의 농도가 높기 때문에 흡착제를 재생하는 과정에서 16,000 원/톤 이상의 재생약품비용이 소비된다. 이에 본 연구에서는 가축분뇨 내에 존재하는 암모니아를 50% 회수함으로써 경제성을 증가 시키고 공정에서 발생하는 악취 문제를 2차적으로 해결함으로써 부가적인 효율을 증대시킬 수 있다. 또한 회수된 암모니아를 이용하여 암모니아수, 황산암모늄 등 암모니아화합물을 제조하여 제품화함으로써 부가가치를 창출할 수 있어 시설 투자비와 운전비 대비 부가가치 창출을 기대할 수 있다. 이에 실험실 규모 및 pilot 규모에서의 50% 암모니아 회수 최적 조건과 회수된 암모니아를 이용하여 암모니아화합물 생성 최적 조건을 도출하였으며 이를 토대로 30 톤/일 규모의 실증플랜트 설계를 최적화하였다.
        124.
        2016.11 서비스 종료(열람 제한)
        도시생활폐기물소각재(MSWI ash)을 매립하게 되면 장기적으로 중금속이 침출된다. 급속탄산화를 통하여 MSWI ash 내의 중금속을 탄산염 형태로 고정하여, 중장기적으로 침출을 방지할 수 있다. 본 연구에서는 급속 탄산화 방법을 통하여 소각재인 fly ash의 중금속 저감 및 이산화탄소 저감에 대해 수행하였다. NH4OH, NH4SCN, 및Ca(OH)2를 이용하여 test 하였으며, 소각재의 중금속을 탄산화 전, 후를 비교하여 중금속이 침출량을 비교 하였다. 추가적으로 이산화탄소가 fly ash에 포집된 이산화탄소 저감량을 나타내면서 이산화탄소 흡수제의 재사용 가능성을 확인하였다. 흡수제를 재생하는 과정에서 나온 CO32-이온에 의해 탄산화 된 금속염들의 성분 분석을 위해, XRD (X-ray diffraction analyzer(Ultima Ⅳ))를 사용하였다. 그리고 FE-SEM(Field emission scanning electron microscope, JEOL-7800)으로 filtering후 건조시킨 샘플과 fly ash의 표면구조를 촬영하고 비교하였다.
        125.
        2016.11 서비스 종료(열람 제한)
        온실가스인 이산화탄소는 다른 온실가스에 비해 Global Warming Potential(GWP)가 가장 낮지만 배출량이 전체 온실가스 중 88 %의 비중을 차지하고 있다. 많은 국가에서 기후변화에 관심을 가지고 이산화탄소 저감에 대한 연구개발이 활발히 일어나고 있다. 본 연구에서는 암모늄 화합물을 이용하여 이산화탄소를 포집하고 산업폐기물의 금속이온을 이용하여 무기재료인 탄산칼슘을 생성하는 다양한 방법을 소개한다. 탄산칼슘 생성을 위해 칼슘이온이 포함된 탈황석고, 폐시멘트를 이용하였다. 결과에서 이산화탄소 포집 성능 및 최종생성물의 결정구조를 확인하였으며, 이산화탄소 loading 값  는 약 2.0의 값을 가진다. X-Ray Diffraction, Scanning Electron Microscope의 분석을 통하여 탄산칼슘이 생성되었음을 확인하였으며, 결정구조는 Vaterite가 생성됨을 확인할 수 있다. 효과적인 공정을 위하여, 생성물을 생성한 후 용액을 회수하여 재이용할 수 있어 연속적인 공정이 가능하다. 회수된 용액의 재이용의 가능성을 보기위하여 이산화탄소를 재흡수 시키면서 같은 공정을 2cycle씩 진행하여, 연속적인 공정의 잠재성을 확인하였다.
        126.
        2016.10 KCI 등재 서비스 종료(열람 제한)
        Generally, metal working fluids (MWFs) are used to reduce friction in metalworking processes. In addition to mineral oils, MWFs contain many chemical substances, such as anticorrosive agents, extreme-pressure additives, and stabilizers, as well as high concentrations of organics and ammonia nitrogen. Accordingly, MWFs must be managed to advanced treatment for hydro-ecological conservation. This study investigated the removal efficiency of ammonia nitrogen from MWFs according to operating time, applied voltage, distance between electrodes, and NaCl concentration using aluminum in a batch-type reactor. The experimental results were as follows: First, without NaCl, removal efficiencies of ammonia nitrogen were 69.6%, 37.9%, and 22.7%, when the distance between electrodes was adjusted to 1, 4, and 7 cm, respectively, at 15 V for 60 min. Secondly, without NaCl, removal efficiencies of ammonia nitrogen were 49.5 and 90.9% when the voltage was adjusted to 5 V and 10 V, respectively, for 60 min and 94.6% at 15 V for 40 min. Lastly, with the addition of NaCl 10 mM, the removal efficiency of ammonia nitrogen was 40.3% and 11.5% greater than that of no addition of NaCl at 5 V for 60 min and at 10 V for 30 min.
        127.
        2016.09 KCI 등재 서비스 종료(열람 제한)
        산화대 금 광석에 존재하는 적철석을 암모니아 용액을 이용하여 제거하여 금과 은의 회수율을 향상시키고자 하였다. 산화대에는 석영, 적철석, 백운모가 존재하고 있으며, 적철석은 수성기원으로 형성되었다. 다양한 변수에 대하여 암모니아 용출실험을 수행한 결과, Fe 최대 용출 인자는 -45 μm 입도 크기, 1.0 M의 황산 농도, 5.0 g/l의 황산암모늄 농도 그리고 2.0 M의 과산화수소 농도일 때였다. 이 암모니아 용출용액으로부터 침철석이 침전-형성되는 것을 확인하였으며, 고체-잔류물에서 Fe-제거 량이 증가할수록 Au와 Ag 회수율이 증가하였다.
        128.
        2015.11 서비스 종료(열람 제한)
        가축분뇨의 퇴/액비를 통한 자원화는 경종농가에서의 화학비료 사용으로 인한 양분집적 문제가 발생하고 있다. 따라서 가축분뇨 및 공동자원화시설과 연계한 질소 회수 기술 개발 및 적용을 통해 지역별 양분관리 기술 제공 및 양분총량제에 대응한 가축분뇨 자원화 기술 제공이 필요한 실정이다. 이에 본 연구에서는 가축분뇨 내에 존재하는 암모니아를 50% 회수함으로써 경제성을 증가 시키고 공정에서 발생하는 악취 문제를 2차적으로 해결함으로써 부가적인 효율을 증대시킬 수 있다. 또한 회수된 암모니아를 이용하여 암모니아수, 황산암모늄 등 암모니아화합물을 제조하여 제품화함으로써 부가가치를 창출할 수 있어 시설 투자비와 운전비 대비 부가가치 창출을 기대할 수 있다. 이에 실험실 규모에서의 50% 암모니아 회수 최적 조건과 회수된 암모니아를 이용하여 암모니아화합물 생성 최적 조건을 도출하였다.
        129.
        2014.11 서비스 종료(열람 제한)
        수중생태계는 하수방류수와 비점오염원 등에 의해 유입되는 다양한 유기물질로 인해 물속에 질소(N), 인(P)과 같은 영양물질이 많아짐으로써 부영양화를 초래하게 된다. 특히 산업폐수나 축산폐수와 같이 고농도의 암모니아를 함유하고 있는 폐수의 경우에는 수계에 방출되기 전에 충분한 처리가 필수적이다. 또한 고농도의 유기물을 함유한 축산폐수나 음식물 쓰레기와 같은 폐기물을 처리하는 기술인 혐기성 소화 공정의 운전에서 암모니아는 공정운영에 있어 선택적인 제거가 필요한 실정이다. 제거 방법 중 하나는 암모니아 stripping 방법이 모색되고 있다. 암모니아 스트리핑 방법은 유입 하폐수의 pH를 10~11 이상으로 높인 후, 수중의 암모늄이온(NH4)을 암모니아 기체 분자(NH3)형태로 변형시켜서 공기와 접촉시켜 제거하는 방법이다. 그 중 pH는 자유 암모니아의 분율을 결정하는 매우 중요한 인자이다. pH가 8.0이하에서는 free암모니아의 비율이 10%미만일 경우 air stripping에 의한 암모니아 탈기는 거의 이루어지지 않으며 반면 pH가 10이상에서는 거의 90%이상이 free 암모니아로 존재하여 암모니아 탈기효율을 증진시키기 위해서는 가능한 pH를 높여야 한다. pH가 10이상으로 높아질수록 암모니아 탈기효율은 증가되지만 pH 10 이전보다 매우 많은 양의 pH 조절제(NaOH, CaCO3)가 사용된다. 기초 실험 결과 pH 조절제 각각의 단일 사용 보다 혼합 주입 시 pH 증가에 필요한 사용양이 감소하였다. 따라서 pH증가를 위한 혼합 첨가제의 최적비율과 경제적 사용양의 확인을 위해 적정 pH값을 12로 설정하여 실험 하였다. 본 연구는 pH 8.3, NO3-N 1.56mg/L NH4+-N 1,135mg/L의 음폐수를 원수로 사용하였고, 원수 1L 당NaOH는 0, 1.5, 3.0, 4.5, 6.0, 7.5, 9.0, 10.5일 때, CaCO3 각각 0.3, 0.6, 0.9, 1.2, 1.5의 비율로 혼합하였다. 혼합비율에 따른 암모니아 스트리핑 반응조 실험결과 pH를 12까지 높이는데 필요한 NaOH와 CaCO3의 경제적인 최적의 비율은 15:1로 나타났다.
        130.
        2014.11 서비스 종료(열람 제한)
        산업화가 가속화되면서 지구온난화는 환경을 위협하는 큰 문제로 대두되고 있다. 특히 지구온난화에 50% 이상 기여하는 물질인 이산화탄소는 그 농도가 산업혁명 이후 급격히 증가해왔으며, 이 문제를 해결하기 위해 전세계적으로 이산화탄소 저장기술(Carbon Capture and Storage, CCS)을 개발하는 연구가 활발하게 진행되고 있다. CCS 중 하나인 광물탄산화는 이산화탄소를 칼슘, 마그네슘 등과 반응시켜 불용성 탄산염으로 고정하는 기술이며, 원료로 칼슘이나 마그네슘을 다량 함유한 천연광물 또는 산업부산물이 사용될 수 있다. 제지슬러지소각재(Paper Sludge Ash, PSA)는 제지공정에서 생성되는 산업부산물로 칼슘을 다량 함유하고 있어 광물탄산화에 적합한 재료이다. 본 연구에서는 PSA를 암모늄염(ammonium chloride, ammonium acetate)과 반응시켜 칼슘을 선택적으로 용출한 후 탄산화하는 과정에서 암모니아수를 추가했을 때 탄산화 효율이 어떻게 변하는지를 알아보았다. 용제로 암모늄염 용액(0.3M, 1L)을 사용하여 PSA(20g)로부터 칼슘을 용출시킨 용출액 A와 용출액 A에 암모니아수(1.76mL)를 추가한 용출액 B를 각각 준비한 다음, 대기압 하에서 각 용출액에 이산화탄소(0.1L/min)를 30분 동안 주입하여 탄산화반응을 진행하였다. 용출액 A를 이용한 탄산화반응 결과 6.81g의 탄산칼슘을 회수하였고, 생성된 고체를 기준으로 산출한 이산화탄소 저장량은 149.8kg CO2/ton PSA이었다. 암모니아수를 추가한 용출액 B를 이용한 탄산화반응에서는 반응종료 후 용액 중 칼슘농도가 용출액 A 경우의 절반 정도이었다. 용출액 B로부터 7.69g의 탄산칼슘을 회수하였고, 이 결과는 이산화탄소를 169.2kg CO2/ton PSA 저장하였음을 의미한다. 칼슘 용출액 A에 암모니아수를 추가하면 완충작용이 지속되면서 높은 pH가 유지되기 때문에 용출액 B에서 탄산화 효율이 더 높아졌다. 또한 용출액 B에서처럼 암모니아수를 추가하면 한번 사용한 암모늄염 용제를 간접탄산화에 재사용할 때 칼슘 용출효율을 높이는데 기여하리라고 예상한다.
        131.
        2014.07 KCI 등재 서비스 종료(열람 제한)
        This research investigated the feasibility of rice husk as a biosorbent for removal of ammonium ion from aqueous solutions. To improve the sorption functionality of rice husk, the carboxyl groups were chemically bound to the surface of the rice husk by graft polymerization of acrylic acid using potassium peroxydisulphate as a redox initiator. The removal of ammonium ion by rice husk grafted with acrylic acid (RH-g-AA) was studied in a batch mode and fixed bed columns. The kinetic and equilibrium data obtained from batch experiments follow the second-order kinetics and fit well with the Langmuir isotherm model. The sorption energy determined from D-R model was 8.61 kJ/mol indicating an ion-exchange process as the primary sorption mechanism. To determine the characteristic parameters of the column useful for process design, four mathematical models; Bed Depth Service Time (BDST), Bohart-Adams, Clark and Wolborska models were applied to experimental data obtained from the fixed bed columns with varying bed heights. All models were found to be suitable for simulating the whole or a definite part of breakthrough curves, but the Wolborska model was the best. The fixed bed sorption capacity determined from the Wolborska model was in the range 33.3 ~ 40.5 mg/g close to the value determined in the batch process. The thickness of mass-transfer zone was calculated to be approximately 40 mm from DBST model. The RH-g-AA sorbent could be regenerated by a simple acid washing process without a serious lowering the sorption capacity or physical durability.
        132.
        2014.03 KCI 등재 서비스 종료(열람 제한)
        저 품위 엽납석 광석에 포함된 불순물 Fe를 제거하기 위하여 입도크기, 황산농도, 황산암모늄농도, 과산화수소농도 그리고 온도변화에 따른 제거 효율에 대하여 연구하였다. 저 품위 엽납석 광석에서 자형의 입방체 황철석이 포함된 것을 반사현미경으로 관찰할 수 있었으며, X-선 회절분석결과 주 구성광물은 석영과 딕카이트였다. 실험 결과 Fe 용출율이 최대로 나타나는 입도 -325 mesh에서, 황산농도는 2.0 M에서, 황산암모늄 농도는 10.0 g/l, 과산화수소 농도 3.0 M 그리고 최적의 용출 온도는 70℃에서였다. 용해 동역학 분석에서, Fe 용해는 황철석 표면에서 일어나며 화학적 반응에 통제되는 것으로 그리고 0.066/R, [H2SO4]1.156, [(NH4)2SO4]0.745, [H2O2]0.428 에 비례하는 것으로 나타났다.
        133.
        2013.11 서비스 종료(열람 제한)
        폐기물 자원화시설 및 산업시설에서는 유기성 및 무기성 악취물질이 동시에 발생된다. 악취를 처리하기 위하여 많은 연구가 진행되었지만 기존 연구는 무기성 또는 유기성 악취물질을 단독으로 처리하는 공정 중심으로 개발되었다. 악취를 처리하기 위한 공정에는 물리・화학・생물학적인 공정이 존재한다. 이 중 생물학적 공정인 바이오필터는 경제적이고 2차 오염물질의 발생이 상대적으로 적다. 본 연구에서는 바이오필터를 이용하여 유기성 악취물질인 톨루엔과 무기성 악취물질인 암모니아를 동시에 처리하였으며 시간에 따른 처리특성과 반응기 유입부, 중간, 유출부의 미생물 분포 특성을 파악하고자 하였고 그에 따른 Kinetic 실험도 하였다. 실험에 사용된 바이오필터 반응기의 규격은 내부직경 0.1 m, 높이 1.3 m 이었다. 담체의 재질은 1 cm₃의 폴리우레탄 폼을 이용하였으며 충전된 높이는 0.6 m, 충전된 부피는 0.0047 m₃ 이었다. 톨루엔 가스 유입 농도는 50 ppm(유입부하량 5.63 g/m₃/hr)에서 150 ppm(유입부하량 16.88 g/m₃/hr)까지 순차적으로 증가시킨 후 100 ppm(유입부하량 11.25 g/m₃/hr)으로 유지하였다. 암모니아 가스 유입농도는 591 ppm(유입부하량 12.29 g/m₃/hr)으로 유지하였으며 총 가스유량은 2 L/min, EBRT(Empty bed retention time) 2.35 min으로 설정하였다. 톨루엔 가스는 GC/FID로 분석하였으며, 암모니아 가스는 대기오염공정시험법에 준하여 분석하였다. 미생물 분석은 톨루엔 가스 유입농도 100 ppm에서 처리효율이 안정적으로 유지될 때 담체를 채취한 후 PCR-DGGE를 실시하였다. Kinetic 실험은 반응기 유입부, 중간, 유출부에서의 순차적인 처리효율을 파악하였다. 120 일의 연속실험 결과 암모니아는 99%이상 처리효율을 보였으며, 톨루엔은 100 ppm까지 95% 이상의 효율을 나타냈지만 150 ppm에서 74%의 처리효율을 나타내었다. 반응기의 유입부, 중간, 유출부 담체의 미생물 분포를 파악한 결과, 가스유입부에서 암모니아 분해미생물이 우점종으로 나타났으며 중간, 유출부에서는 톨루엔 분해미생물이 우점종으로 나타났다. Kinetic 실험 결과, 가스유입부에는 암모니아 분해미생물이 우점종으로 나타나 42%의 처리효율을 보였으며 충전된 담체의 중간에서 86%의 처리효율을 나타냈다. 톨루엔의 경우 유입부에서 20%, 중간 54%, 유출부에서 92%의 처리효율을 보였다.
        134.
        2013.11 서비스 종료(열람 제한)
        바이오필터는 미생물의 대사작용을 통해 가스상 오염물질을 제거하는 생물학적 공정이다. 생물학적 공정은 친환경적이며, 2차 오염물질이 생기지 않기 때문에 악취가 발생하는 시설에 많이 적용되고 있다. 바이오필터의 운전성능 측면에서 충전담체는 매우 중요한 인자이다. 본 연구는 세라믹 재질의 담체를 Biofilter와 TBAB(Trickle Bed Air Biofilter)에 적용하여 암모니아를 대상으로 제거 특성을 확인하였다. 본 실험의 Biofilter와 TBAB는 995mL의 아크릴 소재로 제작된 반응기를 이용하였다. 세라믹 재질의 담체는 하수슬러지로 접종시킨 후 500mL를 반응기에 충전하여 실험을 실시하였다. 반응기에 유입되는 공기의 유량은 0.8L/min로 주입되었으며, 영양분은 7mL/day와 80mL/day로 Biofilter와 TBAB에 각각 하였다. 암모니아의 초기 농도는 142ppm(9.6g/m³・hr)으로 주입하였으며, 최대 320ppm(21.5g/m³・hr)까지 단계적으로 농도를 상승시켜 임계부하량 및 최대제거성능을 파악하였다. 유입 및 유출되는 암모니아는 인도페놀법을 이용하여 분석을 실시하였다. 바이오필터는 총 70일 동안 운전되었으며, 운전 후 세라믹 담체의 표면 변화를 확인하기 위하여 사용전의 세라믹 담체와 함께 SEM(Scanning electron microscope) 및 EDS(Energy Dispersive X-ray Spectroscopy)를 분석하였다. 본 연구의 실험결과 TBAB와 Biofilter는 운전초기에 불안정한 제거성능을 보였지만 TBAB의 경우 순응기간(15일)을 지난 후 99% 이상의 처리효율을 보여주었으며, Biofilter의 경우 93%의 처리효율이 확인되었다. 단계적으로 암모니아의 유입 농도를 상승시켜 주입한 결과 TBAB는 270ppm(18.1g/m³・hr)까지 98% 이상의 효율이 확인되었으며, 암모니아 농도를 320ppm(21.5g/m³・hr)으로 주입한 결과 처리효율이 94% 수준으로 낮아졌다. Biofilter의 경우 암모니아 농도 270ppm에서 82%의 처리효율이 확인되었으며, 암모니아 농도를 320ppm으로 상승시켜 주입한 결과 처리효율이 71%로 낮아졌다. 단계적인 농도 상승을 통해 세라믹이 충전된 TBAB와 Biofilter의 임계부하량(Critical load) 결과는 각각 13g/m³・hr와 6g/m³・hr이며, 최대제거성능(Elimination capacity)은 21g/m³・hr와 15g/m³・hr로 나타났다. 세라믹 표면을 SEM으로 관찰한 결과 TBAB와 Biofilter에 사용된 세라믹의 표면은 사용 전의 세라믹과 보다 상대적으로 거친 표면이 관찰되었으며, 표면의 성분 변화를 EDS로 확인한 결과 사용 전의 세라믹에서 확인되지 않은 성분인 인(P)이 확인되었다. 인은 미생물이 포함하고 있는 원소로 생물학적 반응기에 사용된 담체 표면에 생물막(Biofilm)이 형성되었기 때문에 세라믹 표면에 인의 성분이 확인되었다고 사료된다.
        135.
        2013.09 KCI 등재 서비스 종료(열람 제한)
        황철석 시료로부터 Fe를 효과적으로 용출시키기 위하여 마이크로웨이브 에너지와 암모니아 용액을 적용하였다. 황철석을 마이크로웨이브에 60분 동안 노출시키자 적철석과 자류철석으로 상변환되었다. 그리고 암모니아 용액에 의하여 Fe가 최대로 용출되는 마이크웨이브 노출시간은 60분이였다. Fe 용출율이 99% 이상으로 나타나는 시료와 마이크로웨이브 노출 조건은 325-400 mesh의 황철석 시료와 60분에서였다. 그리고 암모니아 용출 조건은 0.3 M의 황산, 2.0 M의 황산암모늄 그리고 0.1 M의 과산화수소 농도에서였다. 고체-잔류물에 대하여 XRD 분석을 수행한 결과 황철석, 적철석 그리고 자류철석은 암모니아 용액에 의하여 완전히 제거되었지만 석영은 제거되지 않았다.
        136.
        2011.12 KCI 등재 서비스 종료(열람 제한)
        본 연구는 난과 식물의 암모니아 피해 증상을 정확하게 알기 위해 팔레놉시스, 심비디움, 덴파레, 온시디움을 이용하여 밀폐된 챔버에서 수행하였다. 암모니아 가스처리 농도는 0, 30, 60, 100, 300, 400mg・L-1으로 하였다. 암모니아 가스 처리 조건은 온도 26±1.9℃, 습도 82.4±11.2%로 15시간 처리하여 피해 증상과 정도를 조사하였다. 하루 중 가스 피해 증상이 심한 시간대를 알기 위해 암모니아에 민감한 온시디움를 이용하여 200mg・L-1 농도로 하여 가스 노출시간을 2, 4시간씩 6등분하여 처리하였다. 팔레놉스시는 암모니아 300mg・L-1 이상이 되어야 피해가 발생하며 심비디움, 온시디움, 덴파레는 100mg・L-1 이상에서 피해가 발생하였다. 특히 온시디움이 가장 민감하였다. 가스 농도가 증가할수록 피해엽율은 증가하였는데 400mg・L-1에서는 83.4%였다. 엽록소 형광측정값(Fv/Fm) 또한 감소하였다. 하루 중 시간대별 피해증상은 주간 06~18시에 주로 나타나며 10~16시가 심하게 나타났다. 잎의 주요 피해 증상은 잎이 회갈색으로 급격히 마르며 가장 자리가 말리고 피해 받은 잎은 점점 옅은 황갈색으로 변하거나 건조되었다.
        6 7 8 9