검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,994

        121.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The development of functional carbon materials using waste biomass as raw materials is one of the research hotspots of lithium-sulfur batteries in recent years. In this work, used a natural high-quality carbon source—coffee grounds, which contain more than 58% carbon and less than 1% ash. Honeycomb-like S and N dual-doped graded porous carbon (SNHPC) was successfully prepared by hydrothermal carbonization and chemical activation, and the amount of thiourea used in the activation process was investigated. The prepared SNHPC showed excellent electrochemical energy storage characteristics. For example, SNHPC-2 has a large pore volume (1.85 cm3·g− 1), a high mesoporous ratio (36.76%), and a synergistic effect (S, N interaction). As the cathode material of lithium-sulfur batteries, SNHPC-2/S (sulfur content is 71.61%) has the highest specific capacity. Its initial discharge-specific capacity at 0.2 C is 1106.7 mAh·g−1, and its discharge-specific capacity after 200 cycles is still as high as 636.5 mAh·g−1.
        4,600원
        122.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon/carbon composites are widely used in re-entry engineering applications thanks to their excellent mechanical properties at high temperatures, but they are easily oxidized in the oxygenated atmosphere. It is important to research their residual mechanical properties influenced by oxidation behaviour, in order to ensure the in-service safety. A microscale degradation model is proposed to predict the oxidation behavior based on the mass conservation and diffusion equations, the derived equivalent steady recession rate of composite is employed to evaluate the residual mechanical properties of the oxidized composite theoretically. A numerical strategy is proposed to investigate the oxidation mechanism of this composite. The differences in the degradation rate between the fiber and the matrix resulted in the steady state and an unchanged shape of the front. Residual mechanical properties of composite with three different domains of oxidation were simulated with a multiscale coupled model. The numerical results demonstrated that the mechanical properties of this composite decreased by 24–32% after oxidation for 30 min at 850 °C. Oxidation also caused the stress redistribution inside components, with the stress concentration diminishing their load-bearing capacity. The local areas of increased stress in the pyrocarbon matrix provided new ways for diffusion of oxygen into the pyrocarbon matrix and fibers.
        4,300원
        123.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, gold nanoparticles (AuNPs) were synthesised using green chemistry to decorate multi-walled carbon nanotubes (MWCNTs) made from walnut shells transmission electron microscopy, field-emission scanning electron microscopy (FESEM), atomic force microscopy and fourier transforms infrared spectroscopy were used to diagnose MWCNTs and AuNPs. MWCNT-COOAu, MWCNT-COO and MWCNT-Au were diagnosed by Raman, energy dispersive X-ray analysis and FESEM. The effect of AuNPs, MWCNT-COO, MWCNT-COOAu and MWCNT-Au on pure and serum alkaline phosphatase (ALP) enzyme activity was studied in vitro using the enzyme-substrate 4-nitrophenyl disodium orthophosphate. For pure enzymes, Vmax slightly increased as the concentration of MWCNT-Au, MWCNT-COOAu and MWCNTCOO increased, whereas the Vmax values decreased as the concentration of AuNPs increased. The inhibition type for all NPs varied. For serum ALP enzyme, the Vmax values for Au-based NPs decreased as the concentration of NPs increased. The Vmax values exceeded the standard value at the concentrations of 25, 50 and 75 ppm for MWCNT-Au and MWCNT-COOAu, whereas the Vmax values increased over the standard value for all concentrations of AuNPs.
        4,500원
        124.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, waste corrugated paper was used as carbon precursor with KOH-NaOH mixture (mole ratio was 51:49 and the melting point is 170 °C) as activator to prepare porous carbon at different reaction temperature and different mass ratio of KOH-NaOH mixture/waste corrugate paper fiber. The micro-morphology, pore structure information and composition of porous carbon were analyzed, and the formation mechanism of pores was investigated. The effect of activator amount and pyrolysis temperature on the morphology and structure of porous carbon were studied. The adsorption capacity of porous carbon was evaluated with the methylene blue as model pollutant. The effect of adsorbent amount, adsorption time and temperature on the adsorption performance of the porous carbon were analyzed. The maximum specific surface area is 1493.30 m2 ·g−1 and the maximum adsorption capacity of methylene blue is 518 mg·g−1. This study provides a new idea for efficient conversion and utilization of waste paper.
        4,200원
        125.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Single-walled carbon nanotube (SWNT) has gained significant interest as a transducer in various electrochemical sensing devices due to their unique structure, compatibility with biomolecules, and excellent electronic properties. As-prepared SWNTs are usually a mixture of semiconducting and metallic ones. Despite of the higher content of semiconducting components in mixed SWNTs, metallic properties are predominantly expressed due to the bundling issue of the SWNT during the fabrication process, limiting the applicability to bio-transistor application. Here, we present a multi-scale semiconducting electronic film of SWNTs as a transducing platform for electrochemical field-effect-transistor (eFET) suitable for the sensitive detection of subtle biological modulation. A genetically engineered filamentous M13 phage showing strong binding affinity toward SWNTs on its body surface was used as a biological material, allowing us to fabricate a large-scale transparent semiconducting nanocomposite. As the relative ratio of SWNT to M13 phage decreases, the on–off ratio of SWNT electronic film increases by 1200%. To show broad applicability, the multi-scale SWNT nanomesh-based eFET is applied for monitoring a variety of biological reactions in association with enzymes, aptamers, and even cyanobacteria. The biomimetic electronic material system with the capability of transducing biological responses at a large scale over a broad dynamic range holds excellent promise for biosensors, biofuel cells, and environment monitoring.
        4,000원
        126.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon-based materials have emerged as an excellent class of biomedical materials due to their exceptional mechanical properties, lower surface friction, and resistance to wear, tear, and corrosion. Experimental studies have shown the promising results of carbon-based coatings in the field of biomedical implants. The reasons for their successful applications are their ability to suppress thrombo-inflammatory reactions which are evoked as an immune response due to foreign body object implantation. Different types of carbon coatings such as diamond-like carbon, pyrolytic carbon, silicon carbide, and graphene have been extensively studied and utilized in various fields of life including the biomedical industry. Their atomic arrangement and structural properties give rise to unique features which make them suitable for multiple applications. Due to the specificity and hardness of carbon-based precursors, only a specific type of coating technique may be utilized for nanostructure development and fabrication. In this paper, different coating techniques are discussed which were selected based on the substrate material, the type of implant, and the thickness of coating layer. Chemical vapor deposition-based techniques, thermal spray coating, pulsed laser deposition, and biomimetic coatings are some of the most common techniques that are used in the field of biomaterials to deposit a coating layer on the implant. Literature gathered in this review has significance in the field of biomedical implant industry to reduce its failure rate by making surfaces inert, decreasing corrosion related issues and enhancing biocompatibility.
        5,200원
        127.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated durian (Durio zibethinus) peels to produce powdered activated carbon (DPAC). The influence of process variables such as carbonization temperature, activation time, contact time, CO2 flow rate, and adsorption dosage was optimized using response surface methodology (RSM). A six-factor and two levels Box–Behnken design (BBD) was used to optimize the parameters. The independent variables were activation temperature (°C), duration (min), CO2 flow rate during the activation process (L/min), irradiation of adsorbent (kGy), irradiation duration (min), and adsorbent dosage (g) while phenol removal (mg/L) was the dependent variable (response). Following the observed correlation coefficient values, the design was fitted to a quadratic model (R2 = 0.9896). The optimal removal efficiency (97.25%) was observed at an activation temperature of 900 °C, activation time of 30 min, CO2 flow rate of 0.05 L/min, irradiation dose of 100 kGy, contact time of 35 min and adsorption dosage of 0.75 g. The optimal DPAC showed a BET surface of 281.33 m2/ g. The removal efficiency was later compared with a commercially available activated carbon which shows a 98.56% phenol removal. The results show that the durian peel could be an effective precursor for making activated carbon for phenol removal, and irradiation can significantly enhance surface activation.
        4,000원
        128.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, subabul wood biomass was used to prepare carbon adsorbents by physical and chemical activation methods at various carbonization temperatures. The properties of the carbon adsorbents were estimated through characterization techniques such as X-ray diffraction, Fourier transform infrared spectroscopy, X–ray photo electron spectroscopy, laser Raman spectroscopy, scanning electron microscopy, CHNS-elemental analysis and N2 adsorption studies. Subabul-derived carbon adsorbents were used for CO2 capture in the temperature range of 25–70 °C. A detailed adsorption kinetic study was also carried out. The characterization results indicated that these carbons contain high surface area with microporosity. Surface properties were depended on treatment method and carbonization temperature. Among the carbons, the carbon prepared after treatment of H3PO4 and carbonization at 800 °C exhibited high adsorption capacity of 4.52 m.mol/g at 25 °C. The reason for high adsorption capacity of the adsorbents was explained based on their physicochemical characteristics. The adsorbents showed easy desorption and recyclability up to ten cycle with consistent activity.
        4,900원
        129.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This work reports the fabrication of a flexible Photodetector (PD) using Carbon Dots (CDs)/Polymer composite for Deep UV (DUV) photodetection. The CDs have been prepared using a simple and inexpensive heating process. The syncretic studies reveal the disordered graphitic core with surface functional groups and the excitation-dependent character of CDs. The synthesized CDs are stabilized via Poly Vinyl Alcohol (PVA) through a synergistic effect and investigated for different compositions (2–10 weight %) of CDs. The CDs/PVA composites shows improved absorbance at 208 and 335 nm compared to pure CDs owing to the bonding between them. This advantageous property of high absorption and photo response in the DUV region is utilized by employing CDs/PVA composite as a photo-sensing layer on the ITO-coated PET substrate in the PD. The performance of the PD was measured under dark, short (254 nm) and long (365 nm) UV region. Among all the compositions, 4% CDs/PVA PD exhibits superior performance in terms of high photo-to-dark current ratio (IPh/Id), responsivity and detectivity. The PD functioning and other parameters are discussed in detail and reported.
        4,200원
        130.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Volatile organic compounds (VOCs) are a paramount factor in air pollution of the environment. VOCs are vastly present in the wastewater discharged by the pharmaceutical industries. As it is evaporative in nature, it enters the environment spontaneously and causes air pollution, global warming, acid rain and climate change. VOCs must be treated before discharging or any other aerobic methods using an efficient catalyst. As the catalytic oxidation in the liquid phase is facile compared to the gas phase, this study investigated on catalytic liquid-phase oxidation of VOCs in model and real pharmaceutical wastewater. The model compounds of toluene-, ethylbenzene- and chlorobenzene-contaminated waters were treated separately along with the VOCs present in real pharmaceutical wastewater using a tungsten-based carbon catalyst. The tungsten was impregnated on the low-cost activated carbon matrix as it has good selectivity and catalytic property toward VOCs for facile catalytic operations. The metal catalysts were characterised by Fourier transform infrared spectroscopy, X-ray diffraction studies, and scanning electron microscopy with elemental and mapping analysis. The treatability was monitored by total organic carbon, ultra-violet spectroscopy and high-pressure liquid chromatography analysis. The tungsten-impregnated activated carbon matrix (WACM) has a catalytic efficiency toward toluene by 85.45 ± 1.78%, ethylbenzene by 93.9 ± 1.16%, chlorobenzene by 85.9 ± 2.26% and pharmaceutical VOCs by 85.05 ± 1.73% in 20 treatment cycles. The results showed that WACM worked efficiently in VOCs treatment, preventing the environment from air pollution. Furthermore, liquid-phase oxidation could easily be implementable on an industrial scale.
        5,200원
        131.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a milled carbon nanofiber-reinforced composite paint was prepared to enhance the anti-corrosive properties of concrete structures. Shorter-length (40 μm) milled carbon fibers (MCFs) showed an increased viscosity relative to longer MCFs (120 μm) owing to their 2 weeks (the decrease was especially strong in the acid solution). A carbon nanotube (CNT)- reinforced composite paint showed similar results in uniform distribution in the epoxy resin. The latter showed a decrease in viscosity owing to agglomerative movement in the epoxy resin. The surface hardness and tensile strength of the composite paint linearly increased as the carbon nanofiber loading was increased by up to 7.2 wt% in the epoxy resin, and slowly decreased after soaking in a sulfuric acid or sodium hydroxide solution for to those of the MCFs, whereas CNTs dispersed in isopropyl alcohol (IPA) in advance and mixed with resin showed lower hardness values than those without dispersion in IPA at the same loading. The mechanical properties such as the Shore D hardness and tensile strength of the MCF-reinforced composite paint increased significantly, resulting in a slower surface degradation of the composite paint concrete in a sulfuric acid and sodium hydroxide solution.
        4,000원
        132.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this experimental work, a p-type c-Si (100) substrate with 8 × 8 × 2 mm dimension was taken for TiCN thin-film coating deposition. The whole deposition process was carried out by chemical vapor deposition (CVD) process. The Si substrate was placed within the CVD chamber at base pressure and process pressure of 0.75 and 500 mTorr, respectively, in the presence of TiO2 (99.99% pure) and C (99.99% pure) powder mixture. Later on, quantity of C powder was varied for different set experiments. The deposition of TiCN coating was carried out in the presence of N2– H2–TiCl4–CH3CN gas mixture and 600 ℃ of fixed temperature. The time for deposition was fixed for 90 min with 10 and 5 ℃ min− 1 heating and cooling rate, respectively. Later on, heat treatment process was carried out over these deposited TiCN samples to investigate the changing characteristics. The heat treatment was carried out at 800 ℃ within the CVD chamber in the absence of any gas flow rate. The morphological properties of heat-treated samples have been improved significantly, evidence is observed from SEM and AFM analyses. The structural analysis by XRD has been suggested, upgradation in crystallinity of the heat-treated film as it possessed with sharp and higher intensity peaks. Evidence has been found that the electrochemical properties are enhanced for heat-treated sample. Raman spectroscopy shows that the intensity of acoustic phonon modes predominates the optic phonon modes for untreated samples, whereas for heat-treated samples, opposite trends have been observed. However, significant degradation in mechanical properties for heat-treated sample has been observed compared to untreated sample.
        5,800원
        133.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Medicinal plant-derived carbon dots are eco-friendly and possess therapeutic properties. Among the medicinal plants studied throughout the world, Centella asiatica (L.) Urb. is known for its medicinal values, especially its neuroceutical and cogniceutical properties. This work discusses the green synthesis of carbon dots (CDs) using C. asiatica leaves as the carbon source via fast and cost-effective microwave-assisted method, and its physico-chemical characterization via UV–visible, fluorescence and FTIR spectrometry, XRD, SEM, AFM, TEM, SAED, EDX and zeta potential analyses. The study revealed quasi-spherical CDs having size ~ 3–6 nm, polycrystalline nature, and presence of various functional groups like –COOH, –H, =CH2 and C–O–C with UV absorption peaks at 213 and 322 nm. Interestingly, the C. asiatica-derived CDs exhibited blue fluorescence under UV with maximum emission wavelength of 460 nm when excited at 400 nm. Further, these CDs were evaluated for their biological applications, which uncovered their potential in therapeutics such as antimicrobial properties against both Gram-positive and Gram-negative bacteria at a dose of 10 μg, strong antioxidant activity with IC50 values of 165.28 and 128.48 μg mL− 1 in DPPH and H2O2 assays, respectively, and profound anti-inflammatory activity with IC50 value of 106.20 μg mL− 1 in protein denaturation assay. The CDs were also assessed for cytotoxicity using whole blood cells and were found to be safe for in vitro administration. Thus, the C. asiatica-derived CDs can be exploited for their potent biomedicinal properties. Fluorescent carbon dots (CDs) were prepared by microwave-assisted pyrolysis of Centella asiatica leaf extract and purification. The as synthesized CDs were subjected to various physico-chemical characterization and biomedical assays to understand its properties.
        4,800원
        134.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nowadays, variable materials have been investigated to find alternative lightweight conductors instead of copper because copper has a relatively high density. Carbon nanotube (CNT) is one of the most suitable materials as an alternative conductor to Cu, thanks to its high conductivity. In addition, CNT has many other great properties, such as low density, high strength, and high ampacity. However, individual CNT loses some of its performance after the assembly process. Therefore, CNT materials have been electroplated with copper to achieve lighter conductors. In this study, CNT buckypaper (CNTBP) is fabricated using a multi-walled carbon nanotube and copper electroplated using optimizing electrolyte with the help of additive chemicals such as accelerator and suppressor. Furthermore, the effect of hydrochloric acid in the electrolyte on the electroplating of CNTBP is observed. The results show that HCl in electrolyte enhances the effectiveness of additive chemicals and provide a well-plated CNTBP@Cu composite. The composite in this study is expected to be used in various areas.
        4,000원
        135.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        For the commercialization of hydrogen energy, a technology enabling safe storage and the transport of large amounts of hydrogen is needed. Porous materials are attracting attention as hydrogen storage material; however, their gravimetric hydrogen storage capacity (GHSC) at room temperature (RT) is insufficient for actual use. In an effort to overcome this limitation, we present a N-doped microporous carbon that contains large proportion of micropores with diameters below 1 nm and small amounts of N elements imparted by the nitrogen plasma treatment. The N-doped microporous carbon exhibits the highest total GHSC (1.59 wt%) at RT, and we compare the hydrogen storage capacities of our sample with those of metal alloys, showing their advantages and disadvantages as hydrogen storage materials.
        4,000원
        136.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, numerical modeling on the gas flow and off-gases in the low temperature carbonization furnace for carbon fiber was analyzed. The furnace was designed for testing carbonization process of carbon fibers made from various precursors. Nitrogen gas was used as a working gas and it was treated as an incompressible ideal gas. Three-dimensional computational fluid dynamics for steady state turbulent flow was used to analyze flow pattern and temperature field in the furnace. The off-gas mass fraction and cumulative emission gas of species were incorporated into the CFD analyses by using the user defined function(UDF). As a results, during the carbonization process, the emission of CO2 was the dominant among the off-gases, and tow moving made the flow in the furnace be uniform.
        4,000원
        137.
        2023.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To develop a high capacity lithium secondary battery, a new approach to anode material synthesis is required, capable of producing an anode that exceeds the energy density limit of a carbon-based anode. This research synthesized carbon nano silicon composites as an anode material for a secondary battery using the RF thermal plasma method, which is an ecofriendly dry synthesis method. Prior to material synthesis, a silicon raw material was mixed at 10, 20, 30, 40, and 50 wt% based on the carbon raw material in a powder form, and the temperature change inside the reaction field depending on the applied plasma power was calculated. Information about the materials in the synthesized carbon nano silicon composites were confirmed through XRD analysis, showing carbon (86.7~52.6 %), silicon (7.2~36.2 %), and silicon carbide (6.1~11.2 %). Through FE-SEM analysis, it was confirmed that the silicon bonded to carbon was distributed at sizes of 100 nm or less. The bonding shape of the silicon nano particles bonded to carbon was observed through TEM analysis. The initial electrochemical charging/ discharging test for the 40 wt% silicon mixture showed excellent electrical characteristics of 1,517 mAh/g (91.9 %) and an irreversible capacity of 133 mAh/g (8.1 %).
        4,000원
        138.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 탄소 흐름 관점에서 기존 농촌경관 시스템 구조를 분석하고 이를 토대로 탄소중립 농촌경 관으로 전환하기 위한 자연기반해법을 제시하였다. 농촌경관 시스템은 생산경관, 자연경관, 생활경 관 하위 시스템으로 구성되어 있었으며, 각 하위 시스템을 인과지도 작성하고 이를 통합하였다. 통합 인과지도를 분석한 결과, 토지 이용 및 인간 활동 관리와 피드백 루프의 재구축을 위한 자연기반해법 전략이 필요하다는 것을 확인하였다. 이를 기반으로 본 연구는 ‘토양유기탄소 보존을 위한 탄소 농 업’, ‘탄소 흡수원 경관 관리’, ‘기후스마트 농업’, 그리고 ‘신재생에너지 기반 순환 농업’을 제안하였 다. 본 연구 결과는 기존 생산과정 중심의 농촌지역의 탄소중립 정책에서 벗어나 농촌경관 시스템의 전반적인 탄소 흐름을 확인하여 자연기반해법을 제시하였다는 데에 의의가 있다.
        4,300원