본 시험은 7~9월 수확을 위한 고랭지 오이의 비가림 재배시 생력형 유인방법인 아치식의 재배방법을 개발하고자 실시하였다. 아치식의 유인높이(1.5 m, 1.8 m 및 2.1 m), 재식거리(90×40 cm, 90×50 cm 및 90×60 cm) 및 적심절위(20절, 25절, 30절, 35절 및 무적심)를 비교하였다. 비가림하우스 내 지표면 위 2.1 m의 기온은 37℃로 너무 높아, 2.1 mrn에서는 일소현상이 나타났다. 아치식 유인높이 1.8 mrn가 다른 유인높이에 비해 착과율과 상품율이 높았다. 상품수량은 1.8 m에서의 102,691 kg · ha-1로 1.5 mrn의 84,790 kg · ha-1보다 21% 많았다. 재식밀도가 높을수록 노균병 발생율은 증가되었다. LAI는 적심절위가 올라갈수록 높았으며 내부투광율은 재식밀도가 좁을수록 경엽이 밀집되어 낮아졌다. 착과수는 주지보다 측지가 많았으며, 적심절위가 낮을수록 증가하였다. 상품수량은 90×50 cm, 35절 적심구가 98,311 kg · ha-1로 90×40cm, 30절 적심구의 93,807 kg · ha-1보다 5% 증가되었다. 따라서 여름생산을 위한 고랭지에서 오이의 아치식유인 재배시 유인높이는 1.8 m, 재식거리는 90×50 cm 및 적심절위는 35절이 최대의 수량을 얻을 수 있는 재배시스템으로 생각되었다.
본 연구는 오이종자의 발아율 향상과 발아촉진을 위해 간편하고, 비용을 절감할 수 있는 hydropriming의 적정 환경조건을 구명하기 위해 수행되었다. 오이종자의 발아촉진에 최적 priming 처리제는 50 mL NaNO3였다. 유근장 및 유근 건물중은 priming 처리제 종류에 따라 유의적인 차이는 없었으나, priming 및 hydropriming 종자는 무처리보다는 높았다. 그러나 50 mL NaNO3와 hydropriming 처리간 발아력 증진 효과가 동일하여 오이종자에서는 물을 이용한 hydro-priming 처리가 처리비용을 절가할 수 있어 합리적인 종자처리였다. 오이종자의 hydropriming 적정 처리온도는 20℃, 처리시간은 24시간이였다. Hydropriming시 종자 2g에 대한 용액량 10 mL 공급처리에서 발아율이 향상되었고 발아촉진에 좋아 적정 용액량이라고 판단되었다. 인위노화 종자는 발아율이 감소하였고 T50 및 MDG는 지연되었으며, 비정상적인 발아는 증가하였다. 활력이 저하된 조화종자를 ,hydropriming한 처리는 발아율이 향상되었고, 조기 발아하였다. 또한 비정상인 발아는 감소되었으며, 유근생장이 촉진되어 발아력이 부분적으로 회복되었다. 이러한 경향은 노화일수가 경과된 종자일수록, 부적당한 발아조건인 15℃에서 현저하였다.
오이의 생육과 과실의 품질에 미치는 재활용 폐암면, 피트모스, 밤나무 파쇄입자 및 이들의 혼합배지의 효과를 실험한 바 다음과 같은 결과를 얻었다. 플러그 트레이(72공)를 이용한 오이와 토마토 육묘용 배지 시험에서 재활용 폐암면과 밤나무 파쇄입자 단용배지 그리고 각각을 피트모스와 혼합한 6가지 처리(1:1, 1:2, 1:3, v/v), 총 8종류의 배지를 이용하였다. 그 결과 재활용 폐암면과 피트모스를 1:2(v/v)로 혼합한 구에서 오이와 토마토 모두에서 묘의 생육이 가장 좋았다. 공시한 배지의 화학적 특성을 분석한 결과 유기성 배지를 혼합한 구에서 양이온치환용량과 EC 등이 다소 높았다. 밤나무 파쇄입자 단용 및 혼합처리구에서는 오이와 토마토 묘의 생장이 심하게 억제되었는데, 특히 토마토묘의 억제효과가 컸다. 이상의 결과로 미루어 재활용 폐암면이 오이와 토마토의 육묘용 배지로 이용가능성이 매우 크다는 것을 알 수 있었다.
본 연구는 오이와 토마토의 플러그 묘 공정육묘시 발생하는 도장 억제를 위한 적생광 처리시기와 광도의 영향을 알아보기 위해 실험을 수행하였다. 일몰 휴, 야간 및 일출 전 적색광 처리시기에 의한 묘의 도장억제는 일몰 후 처리가 오이와 토마토의 초장을 각각 21.3%와 14.2%로 가장 크게 억제하였고, 경경의 굵기도 가장 두꺼웠다. 엽록소함량은 토마토에서만 일몰 후 처리된 플러스묘의 함량이 대조구에 비해 유의적으로 높게 나타났다. 적색광 초리시기에 의한 두 작물의 건물중을 보면, 대조구에 비해 지상부 건물중은 일몰 후와 일출 전 적색광 처리에 의해 유의적인 감소를 보였다. 오이와 토마토 플러그묘의 T/R율은 일몰 후 처리에서 타 처리에 비해 가장 작았으며 조ㅈ직의 충실도는 밀몰 후 처리에서 가장 크게 나타났다. 광도별 처리에 의한 초장은 오이와 토마토 플러그묘 모두에서 광도가 증가함에 따라 초장은 감소하였다. 하배출, 절간장 및 엽면적도 초장과 유사한 경향을 나타내었다. 두 작물 모두 경경과 엽록소함량 및 조직의 충실도는 광도가 증가함에 따라 증가하는 경향을 보였다. 하지만 지상부와 지하부의 건물율은 광도의 증가에 따라 감소하는 경향이 나타났으며, 오이는 2 및 8 μmol·m-2·s-1의 적색광 처리구에서 토마토는 8 μmol·m-2·s-1처리구에서 가장 낮은 T/R율을 나타내었다.
오이의 생육과 괴실의 품질에 미치는 폐암면, 몇가지 폐버섯 배지, 밤나무 파쇄입자, 질석, 펄라이트, 상용암면의 효과를 실험한 바 다음과 같은 결괴를 얻었다. 야마자키 조성 오이 배양액을 이용한 배지경에서 식물체 생육은 폐암면내피트모스 혼용구와 입상 UR 암면에서 좋았다. 그러나 오이 총수량은 폐팽이버섯 배지에서 가장 많았다. 다음으로 펄라이트, 폐애느타리버섯 배지, 폐암면+피트모스(1:2 v/v) 순서였는데 이들 세 처리 간에는 유의차가 없었다. 당도와 경도는 펄라이트와 질석구에서 높았으며 그 이외는 처리구 상호간에 큰 차이가 없었다. 비타민 C 함량은 배지구간에 일정한 경향이 없었다. 이상의 결과로 미루어 폐배지도 오이의 수경재배 배지로 이용 가능성이 매우 크다는 것을 알 수 있었다.
본 실험은 오이수확기의 메니퓰레이터에 장착하는 엔드이펙터를 생각한 것이다. 모터는 DC모터로 기어를 이용하여 작동되며, 동력전달에 있어 균형적인 배분을 이루었고, 따라서 부드러운 작동이 가능하였다. 또한 축을 이용한 베벨기어의 동력 전달로 모터에서 나온 회전력을 기어로 확실히 전달하였고, 결과적으로 오이 과병 절단 rpm에 있어서는 정확한 측정이 가능했다. 주요 연구결과를 요약하면 다음과 같다. 1. 모터는 칼날을 회전시키는데 있어 제어가 쉽고, 정확한 동력전달로서의 베벨기어는 비교적 정확한 결과를 제시했다. 2.실험에서의 반복적인 오이 절단작업에 제시된 결과는, 모든 작물에 적용될 수는 없지만, 오이 과병의 절단은 적정 rpm라 각도를 구하여 기계적 최적상황을 찾았다. 수평에서 위로 30˚각도와 198 rpm에서 효율 적인 절단작업이 이루어 졌다. 3. 엔드이펙터의 구조는 간단하면서도 고장 없이 제작되어야 하고 또한 경량이며 수분에 부식되지 않는 재료를 사용하여 설계하였다
본 연구는 오이 수확기 개발을 위해 매니퓰레이터를 설계 제작하였다. 실험에 사용한 3축 매니퓰레이터는 견고성, 내구성, 모멘트를 줄이기 위해 모터 및 감속기의 하중이 실리지 않는 곳에 장착하였다. 주요 연구 결과를 요약하면 다음과 같다. 3차원 공간상의 좌표에 대하여 매니퓰레이터의 10회 반복 측정한 오차의 평균은 Z축에 관계없이 0.1 mm내외로 정확하게 작동하는 것으로 나타났다. 실내 실험에서 25개의 오이에 대한 실험 결과 22개의 절단하여 92%의 성공률을 보였으나, 원인은 오이가 기형과이며, 수확한 후 시간이 경과하여 오이 과병의 물성이 변한 것으로 판단된다. 실내 실험에서 오이 과병을 절단하지 못한 경우에도 매니퓰레이터는 오이 과병에 0.1 mm 내외로 엔드이펙터을 접근시켰다. 50개의 오이에 대하여 현장 실험을 한 결과 42개, 84%의 절단율을 보였다. 16%의 오차가 발생한 것은 수확적기가 지나서 오이의 과병이 짧고 뭉툭해서 나타난 것으로 판단된다.
시설하우스 오이재배에서 콜레마니진디벌유지식물(banker plants)을 이용하여 진딧물 방제 실험을 수행하였다. banker plants는 보리두갈래진딧물(Schizaphis graminum)을 접종한 보리 유묘에 콜레마니진디벌(Aphidius colemani)을 조기 정착시킨 것으로 목화진딧물 방제를 오랫동안 지속하게 했다. 천적유지식물은 오이재배 하우스 30당 1개를 2001년 5월 8일 놓았다. Banker plants에 의한 진딧물 방제 효과는 bankerplants를 투입한 5월 9일부터 8월 초까지 효과가 있었으나, 고온기인 8월 이후에는 진딧물의 밀도를 억제하지 못했다. 무처리구에서 진딧물의 밀도는 6월 1일부터 발생하여 6월 26일 증가하였다가 그 후 줄어들었고, 8 월 이후 다시 급격히 증가하였다.
Visual FoxPro를 사용하여 한글 사용과 대용량 정보처리에 문제가 없고 비전문가의 사용이 용이한 전문가 시스템을 개발하였다. 본 시스템에서는 추론 방식으로 패턴매칭을 이용한 순방향 추론을 채택하였으며, 지식베이스는 IF∼THEN 규칙으로 표현하였다. 또한 추론결과의 확신도 계산에는 MYCIN 규칙을 이용하였으며, 윈도우에서의 추론을 위한 제반 자료와 규칙의 수정과 보완이 용이하도록 컨트롤 기능을 채택하였다. 개발된 추론엔진, 데이터베이스 그리고 사용자 인터페이스를 기반으로 모이와 토마토를 대상으로 한 생육장해진단 관련 데이터 베이스를 구축하여, 농민과 같은 비전문가의 활용이 용이한 생육장해 진단용 전문가 시스템을 개발하였다. 개발한 시스템의 사용상 편리성과 정확성을 농민과 농업 종사자들을 대상으로 조사한 결과, 사용자에 따라서 결론의 확신도에는 약간씩 차이가 있었으나 관행의 장해 진단방법과 비교할 때 유용한 것으로 나타났다. 또한 개발된 전문가 시스템의 기본 구조 및 추론엔진은 오이와 토마토 이외의 농작물 생육장해 진단에도 해당 데이터 베이스의 변경을 통하여 직접 응용이 가능할 것으로 기대된다.
플러그묘를 대량으로 생산할 수 있는 폐쇄형 묘생산 시스템을 개발하고자 본 연구가 수행되었다 또한 묘소질이 우수한 청장계 오이 플러그묘를 생산하는 데 필요한 적정 광환경 조건을 확립하고자 오이묘의 생장에 미치는 4수준의 광주기(18/6 h, 12/12 h, 9/15 h, 6/18h)와 4수준의 광합성유효광량자속(200, 300, 400, 500μmo1. m-2 .s-1)의 영향을 구명하였다. 인공광하에서 오이 플러그묘의 생장에 미치는 광주기의 영향은 광합성유효광량자속에 비해서 더 크게 나타났다. 폐쇄형 묘생산 시스템에서 생산된 오이묘의 줄기 직경, 지상부와 지하부 건물중, 엽수, 엽폭, 엽장 및 엽록소함량은 대조구에 비해서 유의성이 높게 나타났다. 한편 배축은 대조구에 비해서 유의성이 인정될 만큼 짧게 나타났다. 6/18h의 광주기와 200μmol. m-2 .s-1의 광합성유효광량자속에서 생산된 오이묘의 생장 특성은 자연광하에서 육묘된 경우와 유사하게 나타났다. 단일 식물인 오이의 특성을 고려할 때 상기 결과는 짧은 명기와 낮은 광량에서 묘소질이 균일한 청장계 오이 플러그묘의 생산이 가능함을 의미하는 것이다. 인공광하에서 식물묘를 생산할 경우 소비전력의 60~70%가 조명기구에 소요됨을 고려할 때 이러한 결과는 인공광형 묘생산 시스템을 이용한 오이 플러그묘의 생산에서 소비전력의 절감 방안에 해당하는 것이다.
원예작물 중 온실가루이의 발생이 가장 심한 오이를 대상작물로 선정하여 온실가루이에 대한 기존의 살충제를 이용한 화학적 방제체계를 수립하기 위하여, 중후기에 방제효과와 잔효독성, 엽중 농약 잔류량 조사, 방제횟수 절감, 농약 저항성 발달 및 오이의 수량 등 온실가루이 방제체계 확립에 필요한 기초적인 사항을 조사하였다. 조사결과 온실가루이에 대하여 가장 효과적인 살충제는 furathiocarb였고 특히 이 약제는 carbofuran으로 더욱 강력한 활성화 과정을 거치면서 온실가루이의 저항성 발달이 비교적 더디게 나타났고 따라서 방제효과가 길고 결과적으로 방제횟수도 줄이는데 기여하는 것으로 판명되었다. 이와는 달리 기존의 다른 약제들에 대해서는 합성피레스로이드계의 약제, deltamethrin, etopenprox, zetacypermethrin 등에 대해서는 저항성 발달이 빨리 나타났고, 일부 유기인계 약제, methidathion, phenthoate, profenofos 등의 경우에는 살포 후 분해가 빨리되어 약효의 상실이 빨라짐으로 인해서 결과적으로 살포회수를 늘여야하는 것으로 나타났다. 이들 기존 살충제들에 대한 저항성 온실가루이의 발생으로 방제가 곤란한 경우에 acetamiprid가 대체 약제로서 유망하였다.
순환식 펄라이트 재배에서 오이의 양액흡수는 일사량 변화와 관계없이 단위일사량당 흡수량이 80~100 mg.MJ-1까지 증가 후 일정하게 유지되어 양액흡수 지표는 전체 양액흡수량보다 단위일사량당 양액흡수량이 더 적합하였다. NO ̄3-N의 흡수량은 초기에 3 mg.MJ-1에서 후기 16 mg.MJ-1로 상승하였고 Ca는 초기에 3mg.MJ-1에서 후기에 14 mg.MJ-11 로, Mg는 초기에 1 mg.MJ-1에서 후기에 5 mg.MJ-1로 증가되었으나, 정식 후 62일 이후의 증가세로 둔화되었다. K는 초기에 5.0 mg.MJ-1에서 후기 18 mg.MJ-1로 증가되었으나 지속적인 증가를 보여주지 못하였는데 이것은 오이의 하엽 제거로 인한 결과로 생각되어진다. 그러나 P는 초기에 0.5 mg.MJ-1에서 후기의 3.2mg.MJ-1로 지속적으로 증가되었다. S는 초기에 0.5 mg.MJ-1에서 증가에 6.5 mg.MJ-1까지 증가되다가 후기에 2.7 mg.MJ-1로 감소되었다. 오이의 각각의 무기이온 흡수량과 가장 상관이 높았던 요소는 정식일수와 엽면적이었으나 이 두 요소와 단위일사량당 양액흡수량과는 r2=0.92, 0.97로 높은 상관을 보였다. 단위일사량당 양액흡수량을 이용한 각각의 무기이온 흡수량 회귀식은 r2=0.9 이상으로 높은 상관관계를 보여 실용적 이용이 가능할 것으로 보였다.
겨울철 시설오이의 관수온도는 일반적으로 12~14℃로서 토양의 깊이 약 15cm의 평균온도 14~16℃보다 낮아 관수로 인하여 작물의 근권온도로 일시적으로 2~4℃ 강하시키게 된다. 이러한 저온관수의 공급은 생육에 장애를 주어 생산수량과 품질에 영향을 주게된다. 따라서 근계 주변의 토양의 온도는 보통 재배작목에 따라 약간씩 차이가 있으나 대체적으로 20~22℃가 적합한 것으로 알려져 있다. 본 연구는 근계가 비교적 작은 생육초기에 가온관수의 효과가 매우 높을 것으로 판단하여 무가온관수와 20℃, 25℃의 가온관수의 효과를 비교 분석하였다. 무가온(13℃)관수를 할 경우 지온의 변화는 지중 10cm까지 약 5~7℃ 낮아졌으며지중 20cm부터는 영향이 2~3℃로 비교적 적었다. 20℃의 기온관수의 경우 지온변화는 지증 5cm가 관수온도와 유사한 20℃정도를 유지하였으며, 지중 10cm에서는 약 2℃정도 내려갔다. 25℃가온관수의 경우 지온변화는 지중 5cm가 약 0.5℃정도 떨어져 지온변화에 영향이 거의 없었으며, 지중 10cm 깊이에서는 약 1.5℃정도 하강하였다. 무가온구에 비하여 가온구(20℃, 25℃)가 초장, 잎수 그리고 마디수에서 5~10% 초기생육이 우수하였으며, 20℃와 25℃의 가온관수구 간의 차이는 미세하였다. 줄기와 뿌리의 생체중과 건물중의 비교하면 25℃의 가온관수구가 20℃의 관수구보다 우수하였으며 무가온구에 비하면 가온관수가 (20℃, 25℃) 약 10~30% 정도 우수하였다. 과수와 평균과중, 생산량에서 무가온구를 기준으로 할 때 20℃ 가온구는 105%, 109%, 115%로 나타났으며, 25℃가온구에서는 각각 109%, 112%, 121%정도로 나타났다.
본연구는 시설내 다양한 환경조건하에서 오이의 호흡속도에 관한 수리적 모형을 개발하고자 실시하였다. 개개 오이 식물에 대한 총광합성속도의 8.55%가 호흡에 사용되었다. 생장호흡계수는 0.0935로 추정되었고 유지호흡속도는 24℃ 온도에서 0.00158g CH2O.g-1.h-1로 추정되었다. 그리고 그것은 온도상승에 따라 지수적으로 증가하였다. 호흡속도는 저장 탄수화물량이 낮아짐에 따라 비례적으로 감소했고 뿌리의 이온흡수호흡속도는 0.6648g CH2O.(gN)-1로 추정되었다.
시설 오이재배에서 조절가능한 환경요인들, 즉 광도, CO2 농도, 온도 그리고 엽중 질소 농도의 변화에 따른 양액재배 오이 엽의 총광합성 속도를 측정하였다. 광보상점은 10~20μmol.m-2 .s-1 정도로 낮았고 광포화점은 1000μmol.m-2 .s-1 이상이었으며, 오이의 총광합성 속도는 온도가 상승할수록 증가속도는 감소하지만 지속적인 증가를 보였으나 24~32℃ 사이에서 광합성 속도는 큰 차이를 보이지 않아 이 범위가 오이 생육에 대한 적정온도인 것으로 나타났다. CO2 보상점은 20-40μmol.mol-1 사이에 위치하였고 CO2포화점은 1200μmol.mol-1이상으로 나타났으며 엽중은 질소함량의 증가에 따른 잎의 총광합성 속도의 변화는 sigmoid형의 증가추세를 보였다. 요인들간의 상호작용 효과에서는 모든 경우 상승적으로 나타나, 한 요인의 수준이 증가함에 따라 타 요인의 수준의 증가에 따른 총광합성 속도도 상승적을 증가하였다. 각환경요인의 변화와 요인들간의 상호작용에 따른 총광합성 속도의 변화에 대한 수리적 모형을 개발하였다. 이들 모형은 시설 내 환경변이에 따른 오이의 생육 내지는 수량에서의 차이를 밝히는데 이용될 수 있으며 오이의 식물생장 모형이나 더 나아가 경영합리화를 위한 오이 생산 전문가 시스템의 개발에 필요한 기초 자료로 이용될 수 있을 것이다.
본 연구는 perlite를 이용한 오이의 양액재배시 적정 배지량과 근권용적을 구명하고자 용기의 크기가 2, 4, 6, 8 및 10l인 플라스틱 포트에 펄라이트를 채워 오이를 양액 재배하였다. 근권용적이 증가할수록 초장, 경경, 엽수 및 엽면적이 증가하였고, 과실수와 과실중량에서는 근권용적이 큰 8l 와 10l 의 처리구에서 가장 양호하였으며 기형과 발생률도 낮은 경향이었다. 근권용적을 6l 이상으로 하였을 때 경으로의 건물분배가 줄어들고 엽으로의 건물분배가 많았다. NAR과 CGR은 근권용적이 증가함에 따라 증가하는 경향을 보였다. 관권용적에 관계없이 본 실험 범위내에서는 LAI가 증가할수록 NAR과 CGR도 증가하는 경향을 나타내었다.
수출용 백침계오이 재배시 수출기간내에 다수확 할 수 있는 최적 육묘방법을 구명코자 1997년과 1998년 2년간 육묘일수와 관수량을 달리하여 실험한 결과, 육묘일수간에는 30일 육묘구가 가장 좋았고, 다음으로 40일, 20일 육묘구 순이었다. 총수량 및 상품수량도 30일 육묘구가 가장 많았고 40일, 20일 육묘구 순이었는데 20일 육묘구는 수확개시기가 늦어 초기수량이 많이 떨어졌고 40일 육묘구는 초기수량은 다소 많았으나 초세의 노화가 빨라 수량이 조기에 급감 되었다. 관수량의 다소는 묘소질에 영향을 미치지 못하였다
This study was carried out to estimate the warmed water irrigation and the warmed soil efficiency on protected cultivation of cucumber in winter season. The water of 28℃ was continuously supplied for soil warming and that is 25℃ for warmed water irrigation. Cucumber growth was analyzed when tile soil kept up the optimum temperature in the root zone. The cucumber growth are compared with the warmed soil plots. isolated warmed soil plots and non-warmed soil plots. The cucumber growth in warmed soil plots and isolated warmed soil plots were 20~50% higher than non-warmed soil plots compare to that by the warmed irrigation. In the non-warmed soil plots, the stem diameter and the number of leaves in the warmed water irrigation plots are 10% higher than those in the normal water irrigation plots. The yields in isolated warmed soil plots were 37~38% higher than non-warmed soil plots and those in warmed soil plots were 85~96% higher than non-warmed soil plots. The fruit length, weight and diameter in warmed soil plots were 15% higher than those in the non-warmed plots.