검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 149

        121.
        2016.05 구독 인증기관·개인회원 무료
        Graphene oxide (GO), a highly oxidized graphene sheet, is a distinguished 2-D nanosheet. GO membranes exhibit good CO2 separation properties due to its various polar functional groups with oxygen resulting in high CO2 sorption properties. Recently, GO nanosheets have been incorporated into polymer membranes expecting the synergistic effect. There is, however, little research on GO as a crosslinker even though it has high potential due to available functional groups for further reaction. Here, we prepared GO/polymer membranes by crosslinking reactions between polar groups of GO and bi-functional polymer matrix at different temperatures. Optimum crosslinking condition was found by analyzing gas transport, chemical properties of samples. Degree of crosslinking in GO/polymer nanocomposites affected gas transport behavior.
        122.
        2016.05 구독 인증기관·개인회원 무료
        Graphene oxide (GO) has been extensively studied for membrane material for gas and liquid separation due to its outstanding features such as selective CO2 or water vapor transport properties. Although GO membranes can be easily fabricated in the form of thin-film composite membranes by using high-flux polymeric support membranes, it shows relatively low gas permeability due to high tortuosity. Here we report the way to improve gas permeation rate through porous graphene oxide by reducing the gas permeation pathway, with maintaining GO’s two-dimensional structure. We also used polymer, which has high CO2/N2 selectivity, and prepared GO/polymer composite membranes as a function of GO concentration. This study will provide a further insight on how such two-dimensional nanosheets can be harmonized with polymer and improved membrane properties.
        123.
        2016.05 구독 인증기관·개인회원 무료
        고분자막이 가진 수투과능 한계와 비가역적 막오염에 의한 효율 저하는 막기반 수처리공정의 추가적인 경쟁력 확보를 위해 해결해야 하는 문제이다. 본 연구에서는 초고속 물투과 특성과 뛰어난 선택성을 지닌 Graphene oxide (GO)막 에 뛰어난 항균성을 가진 은나노(nAg)가 코팅된 막을 제작, 평가하였다. GO막 은 막오염 저감에 효과적일 수 있는 높은 친수성과 음표면전하와 같은 특성과 막오염에 취약할 수 있는 높은 비표면적과 뛰어난 흡착능력과 같은 특성을 동 시에 가진다. 따라서, 논란의 부분이 있는 GO막의 막오염에 대한 저항성의 확실한 향상을 위해 nAg를 적용하였다.
        124.
        2016.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The graphene oxides (GOs) were tested as a fluorescent quencher in the field of DNA-diagnostics. The various suspensions of GO nanoplates were prepared by changing the synthesis conditions. The suspensions were stable for at least 6 weeks by differing degrees of functionalization of various oxygen-containing groups of atoms. Depending on the properties of GO nanoplates, their fluorescent quenching abilities, which were determined by the amount of the tagged immobilized oligonucleotide, were also changed. GO suspension synthesized at 75 oC of reaction mixture showed the fluorescent quenching of 16.39 nmol/mg, which would be a potential substitution of molecular fluorescent quencher in test-systems for DNAdiagnostics.
        4,000원
        125.
        2015.11 구독 인증기관·개인회원 무료
        PEBAX[poly(ether-block-amide)는 열가소성인 탄소체로 부드럽고 유연한 폴리에테르와 단단한 폴리아마이드의 블록으로 이루어졌다. 두 compounds는 기체 분리막에 있어 필수적인 특성을 가지고 있다. 폴리에테르는 높은 투과도를 제공하고 폴리아마이드는 기계적 강도가 좋고 기체 선택성도 우수하다. GO(Graphene oxide)는 흑연으로부터 제조하여 재료의 습득이 용이할 뿐 아니라 기체투과에 선택적 배리어로서 작용한다. 본 연구에서는 GO에 열을 가한 뒤, 함량을 달리한 PEBAX-GO 복합막을 제조하고, 제조된 막의 물리화학적 특성, 기체투과도, 선택성에 대해 연구하였다.
        126.
        2015.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Gas transport through graphene-derived membranes has gained much interest recently due to its promising potential in filtration and separation applications. In this work, we explore Kr-85 gas radionuclide sequestration from natural air in nanoporous graphene oxide membranes in which different sizes and geometries of pores were modeled on the graphene oxide sheet. This was done using atomistic simulations considering mean-squared displacement, diffusion coefficient, number of crossed species of gases through nanoporous graphene oxide, and flow through interlayer galleries. The results showed that the gas features have the densest adsorbed zone in nanoporous graphene oxide, compared with a graphene membrane, and that graphene oxide was more favorable than graphene for Kr separation. The aim of this paper is to show that for the well-defined pore size called P-7, it is possible to separate Kr-85 from a gas mixture containing Kr-85, O2 and N2. The results would benefit the oil industry among others.
        4,000원
        127.
        2015.05 구독 인증기관·개인회원 무료
        PEBAX[poly(ether-block-amide)는 soft flexible polyether부분과 hard rigid polyamide 부분으로 이루어진 열가소성 탄소체이다. 부드러운 polyether 부분은 기체투과에 있어 높은 투과도를 제공하고 단단한 polyamide 부분은 기계적 강도가 좋고 기체 선택성 또한 우수하다. GO(Graphene oxide)는 자연계에 널리 존재하는 흑연으로부터 제조되는데 기체투과에 있어 선택적 배리어로서 작용할 수 있다. 본 연구에서는 PEBAX-GO 복합막을 GO 함량을 달리하여 제조하고 제조된 막의 물리화학적 특성, 기체투과도, 선택성에 대해 연구하였다.
        128.
        2015.05 구독 인증기관·개인회원 무료
        Membrane bioreactor (MBR) and reverse osmosis (RO) process have attracted much attention in the field of wastewater treatment and desalination, respectively. However, MBR has membrane fouling which is the major obstacle in maximizing their efficiency. Also, for the RO process, low energy efficiency still remains unanswered in RO process. In this study, it is demonstrated that the application of graphene oxide (GO) to membrane fabrication can be a novel strategy to overcome the residual problems. In detail, GO was applied to fabrication of polysulfone ultrafiltration membrane for improving anti-biofouling capability of membrane. Furthermore, addition of GO enhanced mechanical strength of highly porous support layer, which enabled the thin-film composite RO membrane to have 1.6 to 4 times higher water flux compared to other RO membranes.
        129.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We investigated the adsorption of Na on graphene and graphene oxide, which are used as anode materials in sodium ion batteries, using density functional theory. The adsorption energy for Na on graphene was -0.507 eV at the hollow sites, implying that adsorption was favorable. In the case of graphene oxide, Na atoms were separately adsorbed on the epoxide and hydroxyl functional groups. The adsorption of Na on graphene oxide-epoxide (adsorption energy of -1.024 eV) was found to be stronger than the adsorption of Na on pristine graphene. However, the adsorption of Na on graphene oxide-hydroxyl resulted in the generation of NaOH as a by-product. Using density of states (DOS) calculations, we found that the DOS of the Na-adsorbed graphene was shifted down more than that of the Na-adsorbed graphene oxide-epoxide. In addition, the intensity of the DOS around the Fermi level for the Na-adsorbed graphene was higher than that for the Na-adsorbed graphene oxide-epoxide.
        4,000원
        130.
        2015.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We report the preparation of sulfonated reduced graphene oxide (SRGO) by the sulfonation of graphene oxide followed by radiation-induced chemical reduction. Graphene oxide prepared by the well-known modified Hummer's method was sulfonated with the aryl diazonium salt of sulfanilic acid. Sulfonated graphene oxide (SGO) dispersed in ethanol was subsequently reduced by γ-ray irradiation at various absorbed doses to produce SRGO. The results of optical, chemical, and thermal analyses revealed that SRGO was successfully prepared by γ-ray irradiation-induced chemical reduction of the SGO suspension. Moreover, the electrical conductivity of SRGO was increased up to 2.94 S/cm with an increase of the absorbed dose.
        3,000원
        131.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Blends of poly(vinyl alcohol) (PVA), polyethyleneimine (PEI), and graphene oxide (GO) were prepared by solution casting method. Calorimetric thermal properties of the blends were investigated. The Tgs of PVA/PEI blends were higher than the Tgs of either of the component polymers at low concentrations of PEI. These abnormal increases of Tgs may be due to the negative entropy of mixing which is associated with strong hydrogen bonding between PVA and PEI. The degree of depression of T0ms was not reduced by the negative entropy of mixing, since strong hydrogen bonding also causes an increase in the magnitude of negative χ between PVA and PEI. The Tg of PVA was increased significantly by adding 0.7 wt.% GO into PVA. The magnitude of negative χ was increased by adding GO into the blends of PVA and PEI.
        4,000원
        132.
        2014.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An attempt was made to investigate the effect of the preparation temperature on the electro-capacitive performance of polypyrrole (PPY)/graphene oxide (GO) nanocomposites (PNCs). For this purpose, a series of PNCs were prepared at various temperatures by the cetyltrimeth-ylammonium bromide-assisted dilute-solution polymerization of pyrrole in presence of GO (wt%) ranging from 1.0 to 4.0 with ferric chloride as an oxidant. The formation of the PNCs was ascertained through Fourier-transform infrared spectrometry, X-ray diffraction spectra, scanning electron microscopy and simultaneous thermogravimetric-differential scanning calorimetry. The electrocapacitive performance of the electrodes derived from sulphonated polysulphone-bound PNCs was evaluated through cyclic voltammetry with reference to Ag/AgCl at a scan rate (V/s) ranging from 0.2 and 0.001 in potassium hydroxide (1.0 M). The incorporation of GO into the PPY matrix at a reduced temperature has a pronounced effect on the electrocapacitive performance of PNCs. Under identical scan rates (0.001 V/s), PNCs prepared at 10 ± 1°C render improved specificconductivity (526.33 F/g) and power density (731.19 W/Kg) values compared to those prepared at 30 ± 1°C (217.69 F/g, 279.43 W/Kg). PNCs prepared at 10 ± 1°C rendered a capacitive retention rate of ~96% during the first500 cycles. This indicates the excellent cyclic stability of the PNCs prepared at reduced tempera-tures for supercapacitor applications.
        4,000원
        133.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는, 산화그래핀(GO) 및 산화철이 기능화된 산화그래핀(M-GO)을 용매인 dimethylformamide (DMF)에초음파분쇄법을 이용하여 완전히 분산시킨 후, 기질고분자인 polyacrylonitrile (PAN)에 첨가하여 전기방사함으로써, 나노섬유 형태의 복합분리막을 제조하였다. 제조된 나노섬유 분리막은 적층수를 변화시켜 기공크기를 조절하였다. Scanning Electron Microscope (SEM) 분석 결과로부터 약 500 nm 크기의 고른 직경분포를 가진 나노섬유 복합분리막이 제조되었음을 확인하였다. 또한, Raman spectroscopy 분석과 Energy Dispersive x-ray Spectroscopy (EDS) 분석 결과로부터 GO 및 M-GO가 분리막 내에 분산되어 있음을 확인하였다. 최종 나노섬유 복합분리막은 상용막(0.27 µm, 55%)과 유사한 기공특성(0.21~0.24 µm,40%)을 보여주었으며, 수투과도 측정결과 PAN 막에 비해 약 200% 향상된 성능을 보여주었다. 이러한 결과로부터, 전기방사법으로 제조된 나노섬유 복합분리막은 수처리용 분리막으로서 충분한 활용가능성이 있다고 판단된다.
        4,000원
        134.
        2014.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, nanocomposites of epoxy resin and chemically reduced graphene oxide (RGO) were prepared by thermal curing process. X-ray diffractions confirmed the microstructural properties of RGO. Differential scanning calorimetry was used to evaluate the curing behaviors of RGO/epoxy nanocomposites with different RGO loading amounts. We investigated the effect of RGO loading amounts on the mechanical properties of the epoxy nanocomposites. It was found that the presence of RGO improved both flexural strength and modulus of the epoxy nanocomposites till the RGO loading reached 0.4 wt%, and then decreased. The optimum loading achieved about 24.5 and 25.7% improvements, respectively, compared to the neat-epoxy composites. The observed mechanical reinforcement might be an enhancement of mechanical interlocking between the epoxy matrix and RGO due to the unique planar structures.
        3,000원
        135.
        2014.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We prepared ethylene vinyl alcohol (EVOH)/graphene oxide (GO) membranes by solution casting method. X-ray diffraction analysis showed that GOs were fully exfoliated in the EVOH/GO membrane. The glass transition temperatures of EVOH were increased by adding GOs into EVOH. The melting temperatures of EVOH/GO composites were decreased by adding GOs into EVOH, indicating that GOs may inhibit the crystallization of EVOH during non-isothermal crystallization. However, the equilibrium melting temperatures of EVOH were not changed by adding GOs into EVOH. The oxygen permeability of the EVOH/GO (0.3 wt%) film was reduced to 63% of that of pure EVOH film, with 84% light transmittance at 550 nm. The EVOH/GO membranes exhibited 100 times better (water vapor)/(oxygen) selectivity performance than pure EVOH membrane.
        4,000원
        136.
        2014.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper reports the effect of adding reduced graphene oxide (RGO) as a conductive material to the composition of an electrode for capacitive deionization (CDI), a process to remove salt from water using ionic adsorption and desorption driven by external applied voltage. RGO can be synthesized in an inexpensive way by the reduction and exfoliation of GO, and removing the oxygen-containing groups and recovering a conjugated structure. GO powder can be obtained from the modification of Hummers method and reduced into RGO using a thermal method. The physical and electrochemical characteristics of RGO material were evaluated and its desalination performance was tested with a CDI unit cell with a potentiostat and conductivity meter, by varying the applied voltage and feed rate of the salt solution. The performance of RGO was compared to graphite as a conductive material in a CDI electrode. The result showed RGO can increase the capacitance, reduce the equivalent series resistance, and improve the electrosorption capacity of CDI electrode.
        4,000원
        137.
        2013.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Graphene oxide has been synthesized by microwave-assisted exfoliation of graphite oxide prepared by modified Hummers method. Graphite was oxidized in a solution of H2O2 and KMnO4 at 65~80˚C, followed by 10 % H2O2 solution treatment at 80~90˚C. The graphite oxide was exfoliated under microwave irradiation of 1 kW and was reduced to graphene effectively by hydrazine hydrate (H4N2·H2O) treatment. The exfoliation of graphene oxide was significantly affected by the microwave irradiation on (heating)/off (cooling) period. An on/off period of 10 s/20 s resulted in much more effective exfoliation than that of 5 s/10 s with the same total treatment time of 10 min. This can be explained by the higher exfoliation temperature of 10 s/20 s. Repetition of the graphite oxidation and exfoliation processes also enhanced the exfoliation of graphene oxide. The thickness of the final graphene products was estimated to be several layers. The D band peaks of the Raman spectra of the final graphene products were quite low, suggesting a high crystal quality.
        4,000원
        138.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, poly(amic acid) was prepared via a polycondensation reaction of 3,3'-dihydroxybenzidine and pyromellitic dianhydride in an N-methyl-2-pyrrolidone solution; reduced graphene oxide/polybenzoxazole (r-GO/PBO) composite films, which significantly increased the electrical conductivity, were successfully fabricated. GO was prepared from graphite using Brodie's method. The GO was used as nanofillers for the preparation of r-GO/PBO composites through an in situ polymerization. The addition of 50 wt% GO led to a significant increase in the electrical conductivity of the composite films by more than sixteen orders of magnitude compared with that of pure PBO films as a result of the electrical percolation networks in the r-GO during the thermal treatment at various temperatures within the films.
        3,000원
        139.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we present a facile method of fabricating graphene oxide (GO) filmson the surface of polyimide (PI) via layer-by-layer (LBL) assembly of charged GO. The positively charged amino-phenyl functionalized GO (APGO) is alternatively complexed with the nega-tively charged GO through an electrostatic LBL assembly process. Furthermore, we investi-gated the water vapor transmission rate and oxygen transmission rate of the prepared (reduced GO [rGO]/rAPGO)10 deposited PI film(rGO/rAPGO/PI) and pure PI film.The water vapor transmission rate of the GO and APGO-coated PI composite filmwas increased due to the intrinsically hydrophilic property of the charged composite films.However, the oxygen trans-mission rate was decreased from 220 to 78 cm3/m2·day·atm, due to the barrier effect of the graphene filmson the PI surface. Since the proposed method allows for large-scale production of graphene films, it is considered to have potential for utiliation in various applications.
        3,000원
        140.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanocomposites comprised of graphene oxide (GO) nanosheets and magnesium oxide (MgO) nanoparticles were synthesized by a sol-gel process. The synthesized samples were studied by X-ray powder diffraction, atomic force microscopy, transmission electron microscopy, and energy-dispersive X-ray analysis. The results show that the MgO nanoparticles, with an average diameter of 70 nm, are decorated uniformly on the surface of the GOs. By controlling the concentration of the MgO precursors and reaction cycles, it was possible to control the loading density and the size of the resulting MgO particles. Because the MgO particles are robustly anchored on the GO structure, the MgO/GOs nanocomposites will have future applications in the fields of adsorption and chemical sensing.
        3,000원
        6 7 8