검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,707

        121.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 3차원 엮임 재료의 유체투과율 향상을 목적으로 수치해석 데이터 기반의 물성치 회귀 분석 및 최적설계를 소개한다. 우선 3차원 엮임 재료를 구성하는 와이어 사이의 간격을 결정하는 배율 계수를 매개변수화 하여 다양한 배율 조합을 가지는 수치 모 델을 생성하였고, 전산 수치해석을 통해 계산된 각 모델의 체적 탄성계수, 열전도 계수, 유체투과율 데이터를 이용하여 다항식 기반의 회귀 분석을 수행하였다. 이를 사용해서 체적 탄성계수와 유체투과율 사이의 다목적함수 최적설계를 통한 파레토 최적해를 도출하였 으며, 두 물성치가 서로 상충 관계에 있음을 확인하였다. 한편 3차원 엮임 재료의 열전달 효율을 높이기 위해서 유체투과율을 최대화 시키는 것을 목적으로 경사도 기반 최적설계를 수행하였고, 제약조건인 체적 탄성계수의 크기별 유체투과율의 변화율을 분석하였다. 그 결과 설계자가 원하는 최소한의 강성을 가지는 최대 유체투과율 설계 모델을 얻어낼 수 있음을 확인하였으며, 회귀 방정식을 통해 서 얻어진 설계가 높은 정확도를 가지고 있음을 추가적으로 검증하였다.
        4,000원
        122.
        2022.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Recently, the necessity of designing and applying tool materials that perform machining of difficult-to-cut materials in a cryogenic treatment where demand is increasing. The objective of this study is to evaluate the performance of cryogenically treated WC-5 wt% NbC hard materials fabricated by a pulsed current activated sintering process. The densely consolidated specimens are cryogenically exposed to liquid nitrogen for 6, 12, and 24 h. All cryogenically treated samples exhibit compressive stress in the sintered body compared with the untreated sample. Furthermore, a change in the lattice constant leads to compressive stress in the specimens, which improves their mechanical performance. The cryogenically treated samples exhibit significant improvement in mechanical properties, with a 10.5 % increase in Vickers hardness and a 60 % decrease in the rupture strength compared with the untreated samples. However, deep cryogenic treatment of over 24 h deteriorates the mechanical properties indicating that excessive treatment causes tensile stress in the specimens. Therefore, the cryogenic treatment time should be controlled precisely to obtain mechanically enhanced hard materials.
        4,000원
        123.
        2022.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Tin-antimony sulfide nanocomposites were prepared via hydrothermal synthesis and a N2 reduction process for use as a negative electrode in a sodium ion battery. The electrochemical energy storage performance of the battery was analyzed according to the tin-antimony composition. The optimized sulfides exhibited superior charge/discharge capacity (770 mAh g-1 at a current density of 100 mA g-1) and stable lifespan characteristics (71.2 % after 200 cycles at a current density of 500 mA g-1). It exhibited a reversible characteristic, continuously participating in the charge-discharge process. The improved electrochemical energy storage performance and cycle stability was attributed to the small particle size, by controlling the composition of the tin-antimony sulfide. By optimizing the tin-antimony ratio during the synthesis process, it did not deviate from the solubility limit. Graphene oxide also acts to suppress volume expansion during reversible electrochemical reaction. Based on these results, tin-antimony sulfide is considered a promising anode material for a sodium ion battery used as a medium-to-large energy storage source.
        4,000원
        124.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Flammulina velutipes, known as winter mushroom in the family of Physalacriaceae, is the main edible and export mushroom with the third highest production after oyster and king oyster mushroom in Korea. However, as normal consumers regard F. velutipes as a simple subsidiary material, there is a limitation to increasing mushroom demand. In order to overcome the consumption limit and increase the differentiation of new varieties, it is necessary to breed varieties with enhanced functionality in consideration of consumer preferences. Therefore, the study was performed to analyze nutrient components and several useful functional substances with 26 genetic resources of F. velutipes. Analyses of inorganic compound(Ca, K, Mg) and 15 amino acids revealed that Strain 4148 had the highest content among the 26 strains. Beta-glucan, which increases immune activity and polyphenol, which exert antioxidant effects were higher in non-white strains than in white strains with a small number of exceptions. Among the five fatty acids, linoleic acid(an omega-6 fatty acid) and α-linolenic acid(an omega-3 fatty acid), were detected in six mushroom strains. α-linolenic acid, which was not found in five major mushrooms including oyster mushrooms, was identified in F. velutipes. The results of HPLC analysis showed that ‘Auram’ (Strain 4232) and ‘Baekseung’(Strain 4230) had the highest content of the stabilizing neurotransmitter GABA(15.38 μg/ml and 20.56 μg/ml, respectively) among non-white and white strains, respectively. Our findings provide useful information for breeding F. velutipes to obtain strains with enhanced functionality.
        4,000원
        125.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Owing to industrial development, the occurrence of continuous environmental damage such as abnormal weather is accelerating because of a rapid increase in carbon emissions. Therefore, various efforts are expended worldwide to realize a low-carbon ecofriendly society. In the construction industry, various efforts have been realized to reduce environmental pollution such as greenhouse gas emissions, for example by introducing eco-friendly materials and reducing industrial waste. In this study, an asphalt pavement technology that can reduce production and construction temperatures by more than 60 °C is developed to reduce the amount of carbon generated in the asphalt industry. METHODS : The performance of a half-warm asphalt binder developed using thermoplastic elastomers and low-temperature additives was assessed. In addition, the change in the quality of a mixture due to the use of the half-warm asphalt binder was evaluated. RESULTS : As the amount of thermoplastic elastomer used increases, the performance grade of the asphalt binder increases as well. When 3% or more of the elastomer is incorporated, the target performance grade of the asphalt binder is satisfied. In addition, by incorporating the thermoplastic elastomer and a low-temperature additive, the overall moisture and rutting resistance increased even at relatively low production and compaction temperatures. CONCLUSIONS : Additional measures to stabilize quality and improve economic feasibility will present a new paradigm for investigations into eco-friendly asphalt concrete pavements.
        4,000원
        126.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this study, to improve the quality and construction performance of backfill materials for road excavation and restoration, the basic properties of rapid-hardening materials and stone sludge are analyzed to propose an optimal mix design. METHODS : To utilize rapid-hardening materials and stone sludge as controlled low-strength materials for pipeline construction in downtown areas, specimens were prepared for each compounding condition of fast-hardening materials. Flow, slump, and compressive strength tests were performed at various setting times. Subsequently, the physical and mechanical characteristics of the rapid-hardening backfill material for each mixing factor were analyzed. RESULTS : When ultrafast hardening cement and stone sludge are used, a setting time exceeding 30 min is required for a water–binder (W/B) ratio of 200% or higher. Considering the economic feasibility of ultrafast hardening cement, a W/B of 300% is considered the most suitable when high-performance superplasticizer and retarders are mixed. A flow test was performed on the rapid-hardening backfill material and the results show that if the mixing time exceeds 10 min, then the fluidity decreases rapidly, which necessitates a higher amount of superplasticizer. When ultrafast hardening cement is used, the initial strength (based on 4 h) is 0.7 MPa or higher for all formulations at a W/B ratio of 300%, and the compressive strength decreases slightly as the amount of superplasticizer is increased by 0.1%. CONCLUSIONS : Based on the fluidity and strength of the backfill material, which is composed of a rapid-hardening material and stone sludge, the most optimal performance is achieved when ultrafast-hardening cement with a W/B ratio of 300% is used in addition to a highperformance fluidizing agent 0.3% (wt./B) and retarder 0.2% (wt./B).
        4,000원
        127.
        2022.12 KCI 등재 구독 인증기관·개인회원 무료
        돌발성 해충인 매미나방의 방제체계 수립을 위해 시판 유기농업자재 21종에 대한 살충 활성을 실내 검정하였다. 90% 이상의 살충 활성을 보인 유기농업자재 11종을 선발하였으며, 유효성분들을 분석하였다. PLS 제도의 대응하여 본 연구 결과는 돌발성 매미나방의 친환경 방제 및 향후 유기농업자재의 개발에도 활용이 가능할 것으로 생각된다.
        128.
        2022.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Lithium-ion batteries (LIBs) are powerful energy storage devices with several advantages, including high energy density, large voltage window, high cycling stability, and eco-friendliness. However, demand for ultrafast charge/discharge performance is increasing, and many improvements are needed in the electrode which contains the carbon-based active material. Among LIB electrode components, the conductive additive plays an important role, connecting the active materials and enhancing charge transfer within the electrode. This impacts electrical and ionic conductivity, electrical resistance, and the density of the electrode. Therefore, to increase ultrafast cycling performance by enhancing the electrical conductivity and density of the electrode, we complexed Ketjen black and graphene and applied conductive agents. This electrode, with the composite conductive additives, exhibited high electrical conductivity (12.11 S/cm), excellent high-rate performance (28.6 mAh/g at current density of 3,000 mA/g), and great long-term cycling stability at high current density (88.7 % after 500 cycles at current density of 3,000 mA/g). This excellent high-rate performance with cycling stability is attributed to the increased electrical conductivity, due to the increased amount of graphene, which has high intrinsic electrical conductivity, and the high density of the electrode.
        4,000원
        136.
        2022.10 구독 인증기관·개인회원 무료
        The dimensioning machine installed in the hot cell has been used for 20 years. It has been used for a long time so it was often malfunction due to aging and radiation. In addition, some parts of apparatus were discontinued and there were a lot of problems in maintenance and repair. In the old measuring system, the operator’s subjectivity was much involved. The process of control the focal length (distance between lens and specimen) by operator’s sense is a good example. The existing dimensioning machine was the Kh-7700 of Hirox Co., Ltd. As the equipment had been used for a longtime, additional utilities such as jigs, lighting module and servo motors have been customized and used. The same company’s apparatus was selected for the reasons that it did not need to manufacture a new utility so it could save the cost of radioactive waste disposal for existing utilities and its radiation resistance which has been used for 20 years in radiation environment. Lighting, standing, stage, controllers, cables and so on had been customized to provide remote control in hot cell. The installation was completed in March of this year in hot cell and has been successfully used until now. Through the improvement of dimensioning machine, an auto-focusing and multi-focusing were available. Therefore, they made it possible to produce high quality data and improve the accuracy of data. And this research could be a good example of how hot cell devices can be built and customized to achieve remote control.
        137.
        2022.10 구독 인증기관·개인회원 무료
        This study presents distribution of naturally occurring radioactive materials in groundwater in Jeju island. Radon (222Rn) and potassium (40K) concentrations were performed by using RAD H2O of RAD7 and 940 Professional IC Vario, respectively. In addition, the activities of uranium and thorium nuclides were analyzed by ICP-MS. All of the groundwater samples were collected from 29 sites from August to October 2022. The radon concentrations in groundwater were in the range of 0 to 60 Bq L-1, and there was no groundwater exceeding the range of 148 Bq L-1 proposed by the US EPA. The distribution of uranium in groundwater varied from 0 to 0.6 μg L-1 and did not exceed 30 μg L-1, thresholds indicated by the US EPA.
        138.
        2022.10 구독 인증기관·개인회원 무료
        Since radon was detected in mattresses of famous bed furniture brands in 2018, the nuclear safety and security commission (NSSC) announced the radiation safety management act in April 2021 to protect the public health and environment. This act stipulates the safety management of radiation that can be encountered in the natural environment such as the notification of radioactivity concentration of source materials, process by-products, the installation and operation of radioactive monitors. In this study, a model was established to predict radioactive exposure dose from radioactive materials such as radon and uranium detected in consumer products such as bed mattresses, pillows, shower, bracelets and masks in order to identify major radioactive substances that largely affect the exposure dose. A period of seven years from 2014 to 2020 was investigated for the source materials and exposure doses of consumer products containing naturally occurring radioactive materials (NORMs). We analyzed these using machine learning models such as classification and regression tree (CART), Random Forest and TreeNet. Index development and verification were performed to evaluate the predictive performance of the models. Overall, predictive performance was highest when Random Forest or TreeNet was used for each consumer product. Thoron had a great influence on the internal exposure dose of bedding, clothing and mats. Uranium had a great influence on the internal exposure dose of other consumer products except whetstones. When the number of data is very small or the missing value rate is high, it is difficult to expect accurate predictive performance even with machine learning techniques. If we significantly reduce the missing value rate of data or use the limit of detection value instead of missing values, we can build a model with more accurate predictive performance.
        139.
        2022.10 구독 인증기관·개인회원 무료
        The segmentation of activated components including reactor vessel and reactor vessel internals requires many information. The primary information is material composition, trace materials in the composition, neutron flux during operation, etc. According to the EPRI report the primary basis of activity in a decommissioning source term is the activated metals from the reactor vessel and vessel internal components. The report indicates that over 95% of the radioactivity from decommissioning, except from spent nuclear fuel, consists of activated metals. These are from the reactor vessel, reactor internal structures and expendable components which are constructed primarily of various grades of stainless steel. Stainless steel contains appreciable levels of impurity cobalt. The common primary radionuclides of concern for the disposal environment from activated metals identified in US and international studies include C-14, Cl-36, Ni-59, Co-60, Ni-63, etc. The most common types of stainless steels used in reactor vessel construction and internal components include the Type 304(L), Type 316(L) and various grades of Inconel. The components of stainless steel are mainly Ni, Cr, Mo, Nb, etc., and when these elements are activated, they produce nuclides such as Nb-94, Tc-99, Sr-90, etc. In this study, the current status of activation analysis is reviewed to understand the effects of many variables. Also, the effect of trace materials is reviewed, including transformation of radioactive nuclides.
        140.
        2022.10 구독 인증기관·개인회원 무료
        Most of the wastes generated when dismantling nuclear power plant were contaminated with lowlevel radioactive materials, therefore, applying a plasma melting system is a good option to dispose of the complex wastes safely. Melting system with plasma technology was developed to dispose single metal or composite objects. Its purpose is to secure final emissions satisfying final treatment conditions by controlling oxidization/ reduction reaction condition in detail during the melting process. A hollow plasma torch applied at plasma melting system could be operated with various plasmaforming gasses such as N2, Air, Ar, O2, and etc. The melting furnace was designed based on a double sealing structure to prevent risk factors; such as leaks, etc. in the reaction condition. The effect of the external air inflow on the melting conditions was minimized by carefully designing the object input device, torch mounting part, final object discharge part, etc.