검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 149

        141.
        2013.09 구독 인증기관 무료, 개인회원 유료
        Cyclodextrin-graphene oxide film on the carbon nanotubes matrix is synthesized by a simple chemical method, and physical, chemical, and electrochemical properties of the composites are investigated. Capacitance is improved markedly up to 84 F/g with chemically reduced graphene oxide at the current density of 0.7 A/ g compared with 2.6 F/g of the previous composites having no graphene oxide. The new composites electrodes show more redox processes, originated from the graphene oxide, in the cycle voltammetry compared to the previous composites which had no graphene oxide, indicating enhancement of capacitances. Following improved energy density of the new composite makes it possible to be an electrode of the hybrid capacitors.
        4,000원
        142.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 microfiltration (MF) 적용을 위한 PVdF/GO 하이브리드 나노섬유막(FG) 제조에 관한 것이다. 지지체인 PVdF (polyvinylidene difluoride) 나노섬유막은 N,N-Dimethylacetamide (DMAc)와 아세톤에 PVdF를 녹여 방사용액 제조 후 전기방사법을 이용하여 제조하였다. 본 연구에서 사용된 GO (grapheme oxide) sheets는 Hummer’s 방법에 따라 제조되었으며, PVdF 나노섬유 지지체 위에 에탄올에 분산시킨 GO용액을 분사함으로써, 최종적으로 PVdF/GO 하이브리드 나노섬유막(FG)을 제조하였다. FG막은 SEM, Raman, 접촉각, 기공특성분석장치(Porometer), 만능인장시험기(UTM)를 사용하여 조사하였고, 수투과도 분석은 제작된 셀(Dead-End Cell)을 이용하여 측정하였다. 접촉각 측정 결과로부터 제조된 FG막의 표면이 친수성으로 개질되었음을 확인할 수 있었으며, 수투과도값은 PVdF막에 비해 약 2.5배 향상된 것을 확인할 수 있었다.
        4,000원
        143.
        2012.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, reduced graphene oxide/polyimide (r-GO/PI) composite films, which showed significant enhancement in their electrical conductivity, were successfully fabricated. GO was prepared from graphite using a modified Hummers method. The GO was used as a nanofiller material for the preparation of r-GO/PI composites by in-situ polymerization. An addition of 20 wt% of GO led to a significant decrease in the volume resistivity of composite films by less than nine orders of magnitude compared to that of pure PI films due to the electrical percolation networks of reduced GO created during imidization within the films. A tensile test indicated that the Young's modulus of the r-GO/PI composite film containing 20 wt% GO increased drastically from 2.3 GPa to 4.4 GPa, which was an improvement of approximately 84% compared to that of pure PI film. In addition, the corresponding tensile strength was found to have decreased only by 12%, from 113 MPa to 99 MPa.
        4,000원
        144.
        2012.12 구독 인증기관 무료, 개인회원 유료
        유러피언(Eu) 착물을 이용하여 산화 그래핀 시트와 비공유 결합방법을 이용하여 제조하였으며, 산화 그래핀(GOS)뿐만 아니라 혼합된 각각의 물질의 특성을 유러피언(Eu) 착물의 흡착을 확인하였다. 또한, 하이브리드 산화 그래핀(GOS)-유러피언(Eu) 착물의 최종생성물은 생물학적 labeling과 anti-counterfeiting 등 여러 실용적인 분야에 적용 가능한 밝은 적색의 발광을 방출하는 물질이다.
        4,000원
        145.
        2012.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, cobalt oxide (Co3O4)/graphene composites were synthesized through a simple chemical method at various calcination temperatures. We controlled the crystallinity, particle size and morphology of cobalt oxide on graphene materials by changing the annealing temperatures (200, 300, 400℃). The nanostructured Co3O4/graphene hybrid materials were studied to measure the electrochemical performance through cyclic voltammetry. The Co3O4/graphene sample obtained at 200℃ showed the highest capacitance of 396 Fg-1 at 5 mVs-1. The morphological structures of composites were also examined by scanning electron microscopy and transmission electron microscopy (TEM). Annealing Co3O4/graphene samples in air at different temperatures significantly changed the morphology of the composites. The flower-like cobalt oxides with higher crystallinity and larger particle size were generated on graphene according to the increase of calcination temperature. A TEM analysis of the composites at 200℃ revealed that nanoscale Co3O4 (~7 nm) particles were deposited on the surface of the graphene. The improved electrochemical performance was attributed to a combination effect of graphene and pseudocapacitive effect of Co3O4.
        3,000원
        146.
        2012.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Mass production of graphene-based materials, which have high specific surface area, is of importance for industrial applications. Herein, we report on a facile approach to produce thermally modified graphene oxide (TMG) in large quantities. We performed this experiment with a hot plate under environments that have relatively low temperature and no using inert gas. TMG materials showed a high specific surface area (430 m2g-1). Successful reduction was confirmed by elemental analysis, X-ray photoelectron spectroscopy, thermogravimetic analysis, and X-ray diffraction. The resulting materials might be useful for various applications such as in rechargeable batteries, as hydrogen storage materials, as nano-fillers in composites, in ultracapacitors, and in chemical/bio sensors.
        3,000원
        147.
        2012.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The size and the physical properties of graphene oxide sheets were controlled by changing the oxidation temperature of graphite. Graphite oxide (GO) samples were prepared at different oxidation temperatures of 20℃, 27℃ and 35℃ using a modified Hummers' method. The carbon-to-oxygen (C/O) ratio and the average size of the GO sheets varied according to the oxidation temperature: 1.26 and 12.4 μm at 20℃, 1.24 and 10.5 μm at 27℃, and 1.18 and 8.5 μm at 35℃. This indicates that the C/O ratio and the average size of the graphene oxide sheets respectively increase as the oxidation temperature decreases. Moreover, it was observed that the surface charge and optical properties of the graphene oxide sheets could be tuned by changing the temperature. This study demonstrates the tunability of the physical properties of graphene oxide sheets and shows that the properties depend on the functional groups generated during the oxidation process.
        4,000원
        148.
        2012.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A novel strategy for the simultaneous reduction and functionalization of graphene oxide (G-O) was developed using polyallylamine hydrochloride (PAAH) as a multi-functional agent. The G-O functionalization by PAAH was carried out under basic conditions to catalyze the epoxide ring opening reaction of G-O with abundant amine groups of PAAH. We found that G-O was not only functionalized with PAAH but also reduced under the reaction condition. Moreover, the synthesized PAAH-functionalized G-O sheets were soluble in water and applicable to the synthesis of nanocomposites with gold nanoparticles.
        4,000원
        149.
        2017.01 KCI 등재 서비스 종료(열람 제한)
        In this study, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/graphene oxide (GO) nanocomposite films containing various content of GO were prepared using solution casting method. The effect of GO content on Young’s modulus and dispersion of GO in PHBV matrix was investigated. Also, the thermomechanical properties, oxygen transmission rates and hydrolytic degradation of PHBV/GO nanocomposite films were studied. The addition of GO into PHBV improves the Young’s modulus and decreases thermal expansion coefficient. The improvement can be mainly attributed to good dispersion of GO and interfacial interactions between PHBV and GO. Furthermore, PHBV/GO nanocomposite films show good oxygen barrier properties. PHBV/GO nanocomposites show lower hydrolytic degradation rates with increasing content of GO.
        6 7 8