검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 167

        141.
        2001.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        LaMnO3, and gel films were deposited by spin-coating technique on scandium-doped zirconia (YSZ) substrate using the precursor solution prepared from , or ,2-methoxyethanol, and polyethylene glycol. By heat-treating the gel films, the electrochemical cells, were fabricated. The effect of polyethylene glycol on the microstructure evolution of and thin films was investigated, and NOx decomposition characteristics of the electrochemical cells were investigated at to . By applying a direct current to the electrochemical cell, good NOx conversion rate could be obtained relatively at low current value even if excess oxygen is included in the reaction gas mixture.
        4,000원
        142.
        2001.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Through the observation of wear scar of two ceramic materials, microstructural wear mechanisms was investigated. As for the -5 vol% SiC nanocomposite, the grain boundary fracture was suppressed by the presence of SiC nano-particles. The intragranular SiC particles have inhibited the extension of plastic deformation through the whole grain. Part of plastic deformation was accommodated around SiC particles, which made a cavity at the interface between SiC and matrix alumina. On the other hand, gas-pressure sintered silicon nitride showed extensive grain boundary fracture due to the thermal fatigue. The lamination of wear scar was initiated by the dissolution of grain boundary phase. These two extreme cases showed the importance of microstructures in wear behavior.
        4,000원
        143.
        2001.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A bulk porous composite with plantinum nano-dispersion was synthesized in air atmosphere through the combination of several in situ reactions, including the pyrolysis of . A mixture of (dolomite), , and LiF (0.5 wt%, as an additive) was cold isostatically pressed at 200 MPa and sintered at for 2 h. The porous composite ( : Pt=99 : 1 in volume) had a uniformly open-porous structure (porosity: 56%) with three-dimensional (3-D) network and a narrow pore-size distribution, similarly to the porous composites reported before. Catalytic Properties (viz., NO direct decomposition and NO reduction by ) of the composite were investigated up to . In the absence of oxygen, the NO conversion rate reached ~52% for the direct decomposition and ~100% for the reduction by , respectively. The results suggest the possibility of the porous composite as a multifunctional filter, i.e., simultaneous hot gas-filtering and in one component.
        4,000원
        144.
        2001.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        MgO based nanocomposite powder including ferromagnetic iron particle dispersions, which can be available for the magnetic and catalytic applications, was fabricated by the spray pyrolysis process using ultra-sonic atomizer and reduction processes. Liquid source was prepared from iron (Fe)-nitrate, as a source of Fe nano-dispersion, and magnesium (Mg)-nitrate, as a source of MgO materials, with pure water solvent. After the chamber were heated to given temperatures (500~), the mist of liquid droplets generated by ultrasonic atomizer carried into the chamber by a carrier gas of air, and the ist was decomposed into Fe-oxide and MgO nano-powder. The obtained powders were reduced by hydrogen atmosphere at 600~. The reduction behavior was investigated by thermal gravity and hygrometry. After reduction, the aggregated sub-micron Fe/MgO powders were obtained, and each aggregated powder composed of nano-sized Fe/MgO materials. By the difference of the chamber temperature, the particle size of Fe and MgO was changed in a few 10 nm levels. Also, the nano-porous Fe-MgO sub-micron powders were obtained. Through this preparation process and the evaluation of phase and microstructure, it was concluded that the Fe/MgO nanocomposite powders with high surface area and the higher coercive force were successfully fabricated.
        4,000원
        145.
        2001.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The microstructure and mechanical properties of nanocomposites synthesized by chemical processing were investigated. The nanocomposites containing 15 vol% hexagonal BN (h-BN) were fabricated by hot-pressing powders covered with turbostratic BN (t-BN). The t-BN coating on particles was prepared by heating particles covered with a mixture of boric acid and urea in hydrogen gas. TEM observations of this nanocomposite revealed that nano-sized h-BN particles were homogeneously dispersed within grains as well as at grain boundaries. The strength and thermal shock resistance were significantly improved in comparison with the microcomposites.
        4,000원
        148.
        2001.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The synthesis and characteristics of W-Ni-Fe nanocomposite powder by hydrogen reduction of ball milled W-Ni-Fe oxide mixture were investigated. The ball milled oxide mixture was prepared by high energy attrition milling of W blue powder, NiO and for 1 h. The structure of the oxide mixture was characteristic of nano porous agglomerate composite powder consisting of nanoscale particles and pores which act as effective removal path of water vapor during hydrogen reduction process. The reduction experiment showed that the reduction reaction starts from NiO, followed by and finally W oxide. It was also found that during the reduction process rapid alloying of Ni-Fe yielded the formation of -Ni-Fe. After reduction at 80 for 1 h, the nano-composite powder of W-4.57Ni-2.34Fe comprising W and -Ni-Fe phases was produced, of which grain size was35nm for W and 87 nm for -Ni-Fe, respectively. Sinterability of the W heavy alloy nanopowder showing full density and sound microstructure under the condition of 147/20 min is thought to be suitable for raw material for powder injection molding of tungsten heavy alloy.
        4,000원
        149.
        2000.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The property and performance of the nanocomposites have been known to strongly depend on the structural feature of Ni nanodispersoids which affects considerably the structure of matrix. Such nanodispersoids undergo structural evolution in the process of consolidation. Thus, it is very important to understand the microstructural development of Ni nanodispersoids depending on the structure change of the matrix by consolidation. The present investigation has focused on the growth mechanism of Ni nanodispersoids in the initial stage of sintering. powder mixtures were prepared by wet ball milling and hydrogen reduction of and Ni oxide powders. Microstructural development and the growth mechanism of Ni dispersion during isothermal sintering were investigated depending on the porosity and structure of powder compacts. The growth mechanism of Ni was discussed based upon the reported kinetic mechanisms. It is found that the growth mechanism is closely related to the structural change of the compacts that affect material transport for coarsening. The result revealed that with decreasing porosity by consolidation the growth mechanism of Ni nanoparticles is changed from the migration-coalescence process to the interparticle transport mechanism.
        4,000원
        152.
        1999.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Mechanical properties of oxide based materials could be improved by nanocomposite processing. To investigate optimum route for fabrication of nanocomposite enabling mass production, high energy ball milling and Pulse Electric Current Sintering (PECS) were adopted. By high energy ball milling, the -based composite powder with dispersed Cu grains below 20 nm in diameter was successfully synthesized. The PECS method as a new process for powder densification has merits of improved sinterability and short sintering time at lower temperature than conventional sintering process. The relative densities of the -5vol%Cu composites sintered at and with holding temperature of were 95.4% and 95.7% respectively. Microstructures revealed that the composite consisted of the homogeneous and very fine grains of and Cu with diameters less than 40 nm and 20 nm respectively The composite exhibited enhanced toughness compared with monolithic . The influence of the Cu content upon fracture toughness was discussed in terms of microstructural characteristics.
        4,000원
        156.
        1998.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The initial sintering behaviour of the powder injection molded (PIMed) W-l5wt%Cu nanocomposite powder was investigated. The W-Cu nanocomposite powder was produced by the mechanochemical process consisting of high energy ball-milling and hydrogen reduction of W blue powder-CuO mixture. Solid state sintering of the powder compacts was conducted at for 2~10 hours in hydrogen at mosphere. The sintering behaviour was examined and discussed in terms of microstructural developments such as W-Cu aggregate formation, pore size distribution and W grain growth. The volume shrinkage of PIM specimen was slightly larger than that of PM(conventional PM specimen), being due to fast local densification in the PIM. Remarkable decrease of carbon and oxygen in the PIM enhanced local densification in the early stage of solid state sintering process with eliminating very fine pores less than 10 nm. In addition, such local densiflcation in the PIM is presumably responsible for mitigating of W-grain growth in the initial stage.
        4,000원
        158.
        1998.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 기지금속과의 고상이나 액상의 고용한이 거의 없는 금속-카본(carbon)계에서 고에너지 볼밀공정을 이용하여 고체 윤활 청동베어링용 Cu-C-X계 나노복합금속분말을 제조하고자 하였다. Cu-10wt.%C-5wt.%AI과 Cu-10wt.%C-5wt.%Fe의 혼합분말을 이르곤 분위기의 attritor내에서 기계적 합금화한 후 Cu-C-X의 나노복합금속분말의 미세조직 특성을 조사하였다. AI, Fe를 첨가하였을 때 10시간 이상의 MA공정에서부터 약 10μm이하의 미세한 Cu-C-X나노복합금속분말을 얻을 수 있었으며, MA 시간에 따른 분말의 형상과 미세구조 변화는 금속-금속계의 MA 과정과 유사하게 진행되는 것을 알 수 있었다. Cu-C-X 나노복합금속분말의 X-선 회절시험 결과, MA 시간에 따라 Cu와 C분말의 회절피크의 폭은 넓어지고 회절강도는 감소하였으며, 특히 흑연피크의 MA시간에 따른 소멸은 흑연의 낮은 원자산란계수 때문에 의한 X-선 흡수 영향으로 고찰하였다. Williamson-Hall식으로 계산된 Cu-C-X 나노복합금속분말내의 Cu의 결정립은 15시간 이상의 MA공정에서부터 약 10nm이하의 크기를 가졌으며, TEM 분석결과로는 불규칙한 형상의 약 10-30nm 크기로 복합화된 Cu결정립을 확인할 수 있었다.
        4,000원
        159.
        1997.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The synthesis of W-l5wt%Cu nanocomposite powder by hydrogen reduction of ball milled W-Cu oxide mixture was investigated in terms of powder characteristics such as particle size, mixing homogeneity and micropore structure. It is found that the micropores in the ball milled oxide (2-50 nm in size) act as an effective removal path of water vapor, followed by the formation of dry atmosphere at reaction zone. Such thermodynamic condition enhances the nucleation of W phase but suppresses the growth process, being in favor of the formation of W nanoparticles (about 21 nm in size). In addition, the superior mixing homogeneity of starting oxide mixture turned out to Play a significant role for forming extraordinary chemical homogeneity of W-l5wt%Cu nanocomposite powder.
        4,000원
        6 7 8 9