검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 764

        161.
        2018.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The main function of the general hospital building is to provide medical facilities and service. However, damage to the non-structural elements such as architectural, medical, mechanical and other components will interrupt those functions after the earthquake. Especially, it is considered that, damage to the non-structural elements is a serious event because it is directly associated with the lives of patients. Therefore, this study evaluated whether the certain non-structural elements of general hospital building has the seismic performance to provide hospital medical services after the earthquake. The evaluation is conducted by selecting the non-structural elements used in general hospital which are sensitive to acceleration, such as cooling towers, air handler, MRI and CT. As a result, the non-structural elements located on the upper floor without suitable support method did not meet the performance objective. Therefore, adequate anchorage against the seismic event is required for such non-structural elements that are acceleration-sensitives.
        4,000원
        162.
        2018.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        One of engineered woods, glued laminated timber (GLT), can provide a constant level of performance and desired strength even if the quality of wood is low. Due to this fact, there is a growing interest in GLT using domestic species and related research has been carried out continuously. In addition, GLT is popularly being applied to the long-span or high-rise structures overseas. However, KBC 2016 does not allow the engineered woods to be used for middle and high-rise buildings by limiting height. Therefore, a proper design procedure and rationale should be clearly presented by the help of performance-based seismic design. With this background, the goal of this study is to establish a specific procedure for design of a 9-story building with RC shear walls and GLT frames according to the performance-based design of KBC 2016. The performance objectives were set according to KBC and the acceptance criteria for each goal were defined. The RC shear walls and GLT frames were designed by concrete and wood structure requirements, respectively. Analytical models were developed to reflect their nonlinear features, and both nonlinear static and dynamic analyses were conducted. Performance evaluation results showed that the shear walls have insufficient shear strength, so they were re-designed. Consequently, it has been confirmed that GLT frames can be applied to a 9-story office building with the assistance of RC shear walls and performance-based seismic design.
        4,000원
        163.
        2018.04 구독 인증기관·개인회원 무료
        The curved beam has a complicated behavior compared to a straight beam due to torsional and warping. Therefor, in this study, eigenvalue analysis was performed for curved beam with different shape(I-shape, T-shape, box-shape) corresponding to the same value of the moment of inertia. As a result the curved beam with box-shape section had a larger natural frequency value than the other curved beam. Also, the dynamic analysis results showed that the largest result was obtained at 826.18MPa in the T-shape curved beam when the gyeongju earthquake was applied.
        164.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study experimentally and analytically examines the seismic vulnerability of steel rack storage frames subjected to Korea earthquakes (2016 Gyeongju earthquake and 2017 Pohang earthquake). To achieve this aim, this study selects a three-story, one-bay steel rack frame with a typical configuration of rack frame in Korea. Firstly, the local behavior for frame components is examined by performing monotonic and/or cyclic load tests and the global response and dynamic characteristics of the subject rack frame are investigated by conducting a shaking table test. The analytical model of the rack frame is then created based on the experimental results and is used to perform nonlinear time history analyses with recorded Korea earthquakes. The seismic demand of the rack frame is considerably affected by the spectral acceleration response, instead of peak ground accelerations (peak floor accelerations). Moreover, the collapse fragility curve of the rack frame is developed using incremental dynamic analyses for the Gyeongju and Pohang earthquakes. Fragility results indicate that the ground motion characteristics of these earthquakes do not significantly affect the frame vulnerability at the collapse state.
        4,300원
        165.
        2018.04 구독 인증기관·개인회원 무료
        In this study, finite element (FE) analysis was performed to evaluate the seismic performance of the water treatment plant, which is a major state of the art water treatment plant, to predict tensile cracks and compressive failure. The FE model simulation for two facilities of the water purification plant was made considering the initial conditions, boundary conditions and water effect. For the nonlinear dynamic analysis, seismic analysis was performed using ground acceleration. Tensile cracks and compressive failure are analyzed and the effects on the structures are analyzed. As a result of the analysis, tensile cracks can be predicted to occur in the main structure.
        166.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present study, effective hydrodynamic pressure modeling methods for three-dimensional earthquake safety analysis of a dam intake tower structure are investigated. Time history analysis results using the Westergaard added mass and Chopra added mass methods are compared with the one by the CASI (Coupled Acoustic Structural Interaction) method, which is accepted as giving almost exact solutions, to evaluate the difference in displacement response, stress and dynamic eccentricity. The 3D time history analysis of a realistic intake tower, which has the standard geometry widely used in Korea, shows that the Chopra added mass method gives similar results in displacement and stress and less conservative results in dynamic eccentricity to CASI ones, while the Westergaard added mass yields much more conservative results in all measures. This study suggests to use the CASI method directly for three-dimensional earthquake safety analysis of a dam intake tower, if computationally possible.
        4,000원
        167.
        2018.04 구독 인증기관·개인회원 무료
        The paper presents an experimental study on shear behavior of RC beams retrofitted with Uni-Directional Narrow Fabric to improve seismic performance. Experimental parameters include the type of fiber, spacing of the fiber, and the ratio of transverse reinforcement. Also, Static loading test was performed on twelve shear-critical specimens. An experimental result were analyzed to investigate the contribution of shear strength and failure modes of the specimens retrofitted or strengthened with Uni-Directional Narrow Fabric compared to the non-retrofitted the specimen. In order to derive the shear strength model according to the spacing of the fiber, the experimental results were compared with the conventional shear strength model of RC elements retrofitted with FRP.
        168.
        2018.04 구독 인증기관·개인회원 무료
        Unlike column-to-beam connections in reinforced concrete frames, column-to-beam connections are generally of the same type. Vertical load (D.L + L.L) and horizontal load (wind load, seismic load) are not the same in the upper and lower flange stress history. In the case of beams bonded to synthetic CFT columns, the tensile force is transmitted through the steel pipe column, and the compressive force is transmitted to the filled concrete, so the seismic performance is excellent even if the column has a relatively thin cross section. Also, in case of beam the composite CFT column, tensile force is taken by the steel pipe column, and the compressive force is caught by the inner concrete, and the shape of the column joint can be changed. In this study, the stress distribution of buildings is investigated according to the size and characteristics of the building, and the load history of the upper and lower flanges according to the building type is checked to show the structural possibility of the Asymmetric Diaphragms joint.
        169.
        2018.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the current research, a seismic ceiling system as one of non-structural elements in buildings has been developed by applying newly designed vertical hanger clips combined with M-bar channel clips. In order to evaluate the seismic performance of the developed system, full-scale shaking table tests of one story frame structure with the conventional ceiling system or the developed seismic ceiling system were performed with time-history responses under earthquake loads. The developed system was also evaluated by the time-history dynamic analysis. From seismic test and analysis, it was shown that the developed seismic ceiling system could give improved seismic performances to minimize displacements and damages of ceiling systems as well as enhance seismic safety of the ceiling system.
        4,000원
        170.
        2018.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, seismic performance of bushings and their connection parts was analyzed by performing shaking table tests for various types of bushings widely used as auxiliary equipment of main transformers in domestic substations. As a result of the seismic tests of five types of 154 kV bushings according to the manufacturers, all the bushings secured the structural integrity even at the acceleration of 1.4 g and it was found that leakage of insulating oil didn't occur. Also, the average acceleration amplification rate at the upper part of the bushings was about 2.5 to 3.0 times higher than the lower one. On the other hand, when a representative 345 kV bushing was subjected to the seismic test, the structural integrity was secured even at 1.0 g acceleration similar to the design earthquake load level, but in this test, leakage of insulating oil occurred. However, when a stiffener restricting the connection of the bushing is installed in the same 345 kV bushing, the displacement of the bushing connection is controlled and the stiffener prevent the oil from leaking even at the acceleration of the designed seismic level.
        4,000원
        171.
        2018.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        ‘Seismic Performance Evaluation Method for Existing Buildings (2013)’ developed in accordance with the overseas guidelines ASCE 41 - 06 is the most widely used procedure among domestic seismic performance evaluation guidelines in Korea. However, unlike ASCE 41 - 06, it stipulates that the final performance should be derived as the gravity load distribution ratio of the lateral force resistance system in the guideline. Therefore, in the case of a dual steel structure system with slender braces, where the internal moment frame is mostly responsible for the gravity load, the evaluation of slender braces based on gravity load distribution ratio is difficult to be achieved. In this research, we propose an objective evaluation process for such system by evaluating seismic performance for large-scale factory facilities as an example.
        4,200원
        172.
        2018.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we conducted a shake table test to verify the seismic performance of the paneling system with steel truss composed of bolt connections. The control group was set to the traditional paneling system with steel truss connected by spot welding method. Test results showed that the bolted connection type paneling system has excellent deformation capacity without cracking or brittle fracture of the steel truss connection parts compared to the welding type paneling system. Furthermore, in the bolted connection type, slight damage occurred at the time of occurrence of the same story drift angle as compared with the existing method, it is considered that it has excellent seismic performance. In compliance with the performance-based design recommended for the current code (ASCE 41-13) on non-structural components, it is judged that in the case of the bolted connection type paneling system, it can be applied to all risk category structures without restriction. However, in the case of traditional paneling system with spot welding method, it is considered that it can be applied limitedly.
        4,000원
        173.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 역량스펙트럼법을 이용해 얻어진 구조물의 성능점을 확률적으로 평가하는 방법을 제시하였다. ATC-40에 따라 역량스펙트럼법을 이용하여 4층 1경간 철골구조물의 성능점을 산정하였다. 요구스펙트럼을 이용하여 구조물의 성능한계를 초과하는지 여부를 분석하기 위해 구조부재의 소성변형각으로부터 정의되는 구조물의 성능한계에 대해 한계변위를 도출하였다. 또한 설계응답스펙트럼과 유사한 응답스펙트럼을 가지는 인공지진파 30개를 선정하여 스펙트럼 가속도에 따른 각 성능한계의 초과여부를 통해 fragility curve를 도출하였다. 관측된 초과확률을 이용하여 fragility curve를 도출하기 위해 maximum likelihood method를 사용하였다. 각 성능한계점에 대응하는 설계응답스펙트럼의 응답가속도값에서 성능한계점을 초과할 확률은 존재하는 것으로 확인되었다. 본 방식은 구조물의 성능점에 대해 지진파의 불확실성을 고려한 확률적 평가가 가능하고, 시간증분해석이 필요하지 않아 해석시간을 상당부분 단축시킬 수 있다는 장점이 있다.
        4,000원
        174.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, performance based seismic design was performed on the shear wall structural system and the beam-column system as a variable general rebar and seismic rebar, and comparing the capacity of the two models of each system. From nonlinear analyses, the capacity of the shear wall structural system applying seismic rebar has shown a stable behavior after the maximum strength, but there is little difference. Furthermore, both models showed similar capacity between story drift and story shear force and capacity of members. These results are attributed to the fact that the seismic rebar, which is highly ductile under the seismic load applied to the target structure, does not render sufficient capacity.
        4,000원
        175.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study develops a new hybrid passive energy dissipation device for seismic rehabilitation of an existing structure. The device is composed of a friction damper combined with a steel plate with vertical slits as a hysteretic damper. Analytical model is developed for the device, and the capacity of the hybrid device to satisfy a given target performance is determined based on the ASCE/SEI 7-10 process. The effect of the device is verified by nonlinear dynamic analyses using seven earthquake records. The analysis results show that the dissipated inelastic energy is concentrated on the hybrid damper and the maximum interstory drift of the SMRF with damping system satisfies the requirement of the current code.
        4,000원
        176.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 테러에 대한 위험성의 증가로 대중들의 폭발 피해에 대한 인식이 증가하였다. 우리나라에 방폭 설계에 대한 기준이 미흡하며, 현재 적용하고 있는 방폭 설계도 정적해석으로 건물의 안정성 및 경제성을 위해 방폭 설계를 개발해야 하는 상황 이다. 또한 지진 발생 증가로 내진 설계 의무화가 확대된 가운데 방폭 설계를 하지 않고 내진 설계를 적용한 부재의 방폭 성능을 판단을 연구한다. 현재 보편적인 폭발 하중의 해석 방법은 UFC 3-340-02 매뉴얼을 참고하는 것이다. UFC 3-340-02 매뉴얼을 통한 폭발 하중의 특성을 적용하고 KBC 2016의 내진 상세를 적용한 보를 등가 단자유도 시스템으로 변환하여 폭발 저항 성능을 연구하였다. 보통, 중간, 특수 모멘트 골조의 연성 능력에 대한 최대 처짐을 고려하여 폭발물의 이격 거리를 통해 평가하여 내진 상세 적용 시 폭발 저항 성능이 향상된다는 것을 입증하였다.
        4,000원
        177.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구의 목적은 트러스의 형태를 바꿔가며 엇갈린 트러스(STF) 시스템의 내진성능을 평가하는 것이다. 예제 구조물은 10층의 철골조 사무실 건물이며, 시스템별로 각각 프랫트러스, 하우트러스, 와렌트러스, 케이트러스와 비렌딜트러스를 적용 하였다. 중력하중, 풍하중, 지진하중을 고려한 구조해석을 실시하여 부재에 높은 DCR을 만족하는 단면을 산정한 후 고유주 기, 밑면전단력과 층간변위를 산출하였다. 그 후, 역량스펙트럼법을 통해 1.2배의 설계지진(DE)과 최대고려지진(MCE)에 대 한 성능점을 산정하고, STF 시스템의 항복여부 및 소성힌지의 분포를 파악하여 구조기준에서 제시한 목표성능수준을 만족 하는지 살펴보았다. 평가 결과, 모든 시스템이 해당 목표성능수준을 만족하였으며, 시스템의 경제성 및 효율성을 따져보았을 때, PR10이나 VR10이 가장 적합한 것으로 나타났다.
        4,000원
        178.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        미국의 내진설계기준인 ASCE/SEI 7-10은 구조물 붕괴성능에 대한 불확실성을 고려하지 않는 등재해도 기반 내진설계의 문제점을 해결하기 위해 위험도 기반 내진설계 개념을 도입하였다. 하지만 현행 국내 내진설계기준의 경우 한반도 내에서 발생한 큰 규모의 지진기록과 구조물의 붕괴성능과 관련된 연구의 부족으로 위험도 기반 내진설계 개념을 반영하지 않고 있 다. 본 연구에서는 철골 보통중심가새골조를 표본건물로 선정하여 위험도 기반 내진성능평가를 수행하였다. 건물이 위치한 지역, 높이, 지반조건을 변수로 바탕으로 표본건물에 대한 붕괴성능 평가를 수행하였으며, 국내 지진기록의 특성을 반영할 수 있는 경험적 스펙트럴 형상 예측 모델을 활용하여 지진재해도 곡선을 작성하였다. 이를 활용하여 국내 주요 도시에 위치 한 철골 보통중심가새골조의 붕괴확률을 위험도 적분 개념에 따라 평가하였다. 국내 주요 도시에 위치한 철골 보통중심가새 골조의 붕괴확률을 평가한 결과, 현행 건축구조기준에 따라 설계된 표본건물은 본 연구에서 고려한 해석 변수에 따라 붕괴 확률에 상당한 차이를 보였다. 특히 국내 건축구조기준의 경우 철골 보통중심가새골조에 대한 높이제한이 없어 일부 고층 표본건물에서 목표 위험도인 50년간 1%의 붕괴확률을 초과하는 것으로 평가되었다.
        4,000원
        179.
        2017.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This present study deals with the microstructure and tensile properties of 600 MPa-grade high strength and seismic resistant reinforcing steels. The high strength reinforcing steel (SD 600) was fabricated by Tempcore processing, while the seismic resistant reinforcing steel (SD 600S) was air-cooled after hot-rolling treatment. The microstructure analysis results showed that the SD 600 steel specimen consisted of a tempered martensite and ferrite-pearlite structure after Tempcore processing, while the SD 600S steel specimen had a fully ferrite-pearlite structure. The room-temperature tensile test results indicate that, because of the enhanced solid solution and precipitation strengthening caused by relatively higher contents of C, Mn, Si and V in the SD 600S steel specimen, this specimen, with fully ferrite-pearlite structure, had yield and tensile strengths higher than those of the SD 600 specimen. On the other hand, the hardness of the SD 600 and SD 600S steel specimens changed in different ways according to location, dependent on the microstructure, ferrite grain size, and volume fraction.
        4,000원
        180.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The building which are essential for disaster recovery is classified as a special seismic use group. Especially, achievement of seismic performance is very important for the hospital, so the hospital should be able to maintain its function during and right after an earthquake without significant damage on both structural and non-structural elements. Therefore, this study aimed at checking the seismic performance of a hospital building, but which was limited to structural elements. For the goal, a plan with a configuration of general hospitals in Korea was selected and designed by two different seismic-force-resisting systems. In analytical modeling, the shear behavior of the wall was represented by three inelastic properties as well as elastic. Nonlinear dynamic analyses were conducted to evaluate the performance of structural members. The result showed that the performance of shear walls in the hospital buildings was not satisfied regardless of the seismic-force-resisting systems, while the demands on the beams and columns did not exceed the capacities. This is the result of only considering the shear of the wall as the force-controlled action. When the shear of the wall was modeled as inelastic, the walls were yielded in shear, and as the result, the demands for frames were increased. However, the increase did not exceed the capacities of the frames members. Consequently, since the performance of walls is significant to determine the seismic performance of a hospital building, it will be essential to establish a definite method of modeling shear behavior of walls and judging their performance.
        4,000원