검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 288

        161.
        2010.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Tin oxide thin films were prepared on borosilicate glass by rf reactive sputtering at different deposition powers, process pressures and substrate temperatures. The ratio of oxygen/argon gas flow was fixed as 10 sccm / 60 sccm in this study. The structural, electrical and optical properties were examined by the design of experiment to evaluate the optimized processing conditions. The Taguchi method was used in this study. The films were characterized by X-ray diffraction, UV-Vis spectrometer, Hall effect measurements and atomic force microscope. Tin oxide thin films exhibited three types of crystal structures, namely, amorphous, SnO and SnO2. In the case of amorphous thin films the optical band gap was widely spread from 2.30 to 3.36 eV and showed n-type conductivity. While the SnO thin films had an optical band gap of 2.24-2.49 eV and revealed p-type conductivity, the SnO2 thin films showed an optical band gap of 3.33-3.63 eV and n-type conductivity. Among the three process parameters, the plasma power had the most impact on changing the structural, electrical and optical properties of the tin oxide thin films. It was also found that the grain size of the tin oxide thin films was dependent on the substrate temperature. However, the substrate temperature has very little effect on electrical and optical properties.
        4,000원
        162.
        2010.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We studied the initial reaction mechanism of Zn precursors, namely, di-methylzinc (Zn(CH3)2, DMZ) and diethylzinc (Zn(C2H5)2, DEZ), for zinc oxide thin-film growth on a Si (001) surface using density functional theory. We calculated the migration and reaction energy barriers for DMZ and DEZ on a fully hydroxylized Si (001) surface. The Zn atom of DMZ or DEZ was adsorbed on an O atom of a hydroxyl (-OH) due to the lone pair electrons of the O atom on the Si (001) surface. The adsorbed DMZ or DEZ migrated to all available surface sites, and rotated on the O atom with low energy barriers in the range of 0.00-0.13 eV. We considered the DMZ or DEZ reaction at all available surface sites. The rotated and migrated DMZs reacted with the nearest -OH to produce a uni-methylzinc (-ZnCH3, UMZ) group and methane (CH4) with energy barriers in the range of 0.53-0.78 eV. In the case of the DEZs, smaller energy barriers in the range of 0.21-0.35 eV were needed for its reaction to produce a uni-ethylzinc (-ZnC2H5, UEZ) group and ethane (C2H6). Therefore, DEZ is preferred to DMZ due to its lower energy barrier for the surface reaction.
        3,000원
        163.
        2010.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The selenization process has been a promising method for low-cost and large-scale production of high quality CIGS film. However, there is the problem that most Ga in the CIGS film segregates near the Mo back contact. So the solar cell behaves like a CuInSe2 and lacks the increased open-circuit voltage. In this study we investigated the Ga distribution in CIGS films by using the Ga2Se3 layer. The Ga2Se3 layer was applied on the Cu-In-Ga metal layer to increase Ga content at the surface of CIGS films and to restrict Ga diffusion to the CIGS/Mo interface with Ga and Se bonding. The layer made by thermal evaporation was showed to an amorphous Ga2Se3 layer in the result of AES depth profile, XPS and XRD measurement. As the thickness of Ga2Se3 layer increased, a small-grained CIGS film was developed and phase seperation was showed using SEM and XRD respectively. Ga distributions in CIGS films were investigated by means of AES depth profile. As a result, the [Ga]/[In+Ga] ratio was 0.2 at the surface and 0.5 near the CIGS/Mo interface when the Ga2Se3 thickness was 220 nm, suggesting that the Ga2Se3 layer on the top of metal layer is one of the possible methods for Ga redistribution and open circuit voltage increase.
        4,000원
        164.
        2010.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We studied the influence of different types of metal electrodes on the performance of solution-processed zinc tin oxide (ZTO) thin-film transistors. The ZTO thin-film was obtained by spin-coating the sol-gel solution made from zinc acetate and tin acetate dissolved in 2-methoxyethanol. Various metals, Al, Au, Ag and Cu, were used to make contacts with the solution-deposited ZTO layers by selective deposition through a metal shadow mask. Contact resistance between the metal electrode and the semiconductor was obtained by a transmission line method (TLM). The device based on an Al electrode exhibited superior performance as compared to those based on other metals. Kelvin probe force microscopy (KPFM) allowed us to measure the work function of the oxide semiconductor to understand the variation of the device performance as a function of the types metal electrode. The solution-processed ZTO contained nanopores that resulted from the burnout of the organic species during the annealing. This different surface structure associated with the solution-processed ZTO gave a rise to a different work function value as compared to the vacuum-deposited counterpart. More oxygen could be adsorbed on the nanoporous solution-processed ZTO with large accessible surface areas, which increased its work function. This observation explained why the solution-processed ZTO makes an ohmic contact with the Al electrode.
        4,000원
        165.
        2010.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Transparent conducting aluminum-doped ZnO thin films were deposited using a sol-gel process. In this study, the important deposition parameters were investigated thoroughly to determine the appropriate procedures to grow large area thin films with low resistivity and high transparency at low cost for device applications. The doping concentration of aluminum was adjusted in a range from 1 to 4 mol% by controlling the precursor concentration. The annealing temperatures for the pre-heat treatment and post-heat treatment was 250˚C and 400-600˚C, respectively. The SEM images show that Al doped and undoped ZnO films were quite uniform and compact. The XRD pattern shows that the Al doped ZnO film has poorer crystallinity than the undoped films. The crystal quality of Al doped ZnO films was improved with an increase of the annealing temperature to 600˚C. Although the structure of the aluminum doped ZnO films did not have a preferred orientation along the (002) plane, these films had high transmittance (> 87%) in the visible region. The absorption edge was observed at approximately 370 nm, and the absorption wavelength showed a blue-shift with increasing doping concentration. The ZnO films annealed at 500˚C showed the lowest resistivity at 1 mol% Al doping.
        4,000원
        166.
        2010.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Oxide semiconductors Thin-film transistors are an exemplified one owing to its excellent ambient stability and optical transparency. In particular zinc oxide (ZnO) has been reported because It has stability in air, a high electron mobility, transparency and low light sensitivity, compared to any other materials. For this reasons, ZnO TFTs have been studied actively. Furthermore, we expected that would be satisfy the demands of flexible display in new generation. In order to do that, ZnO TFTs must be fabricated that flexible substrate can sustain operating temperature. So, In this paper we have studied low-temperature process of zinc oxide(ZnO) thin-film transistors (TFTs) based on silicon nitride (SiNx)/cross-linked poly-vinylphenol (C-PVP) as gate dielectric. TFTs based on oxide fabricated by Low-temperature process were similar to electrical characteristics in comparison to conventional TFTs. These results were in comparison to device with SiNx/low-temperature C-PVP or SiNx/conventional C-PVP. The ZnO TFTs fabricated by low-temperature process exhibited a field-effect mobility of 0.205 cm2/Vs, a thresholdvoltage of 13.56 V and an on/off ratio of 5.73×106. As a result, We applied experimental for flexible PET substrate and showed that can be used to ZnO TFTs for flexible application.
        4,000원
        167.
        2010.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        One of the weak points of the Cr-doped SZO is that until now, it has only been fabricated on perovskite substrates, whereas NiO-ReRAM devices have already been deposited on Si substrates. The fabrication of RAM devices on Si substrates is important for commercialization because conventional electronics are based mainly on silicon materials. Cr-doped ReRAM will find a wide range of applications in embedded systems or conventional memory device manufacturing processes if it can be fabricated on Si substrates. For application of the commercial memory device, Cr-doped SrZrO3 perovskite thin films were deposited on a SrRuO3 bottom electrode/Si(100)substrate using pulsed laser deposition. XRD peaks corresponding to the (112), (004) and (132) planes of both the SZO and SRO were observed with the highest intensity along the (112) direction. The positions of the SZO grains matched those of the SRO grains. A well-controlled interface between the SrZrO3:Cr perovskite and the SrRuO3 bottom electrode were fabricated, so that good resistive switching behavior was observed with an on/off ratio higher than 102. A pulse test showed the switching behavior of the Pt/SrZrO3:Cr/SrRuO3 device under a pulse of 10 kHz for 104 cycles. The resistive switching memory devices made of the Cr-doped SrZrO3 thin films deposited on Si substrates are expected to be more compatible with conventional Si-based electronics.
        4,000원
        168.
        2010.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문은 메탈 이중층 전극을 이용한 유기 박막 트랜지스터를 제작하여 Au나 Ag 금속만으로 제작한 일반적인 유기 박막 트랜지스터와의 전기적 특성을 비교하였다. 전기적 특성에서 게이트 절연층은 높은 K 값을 갖는 Al2O3를 사용하였고, 유기 반도체층은 펜타센을 사용하였다. 본 실험에서 제작한 유기 박막 트랜지스터는 1.6 × 10-1 cm2의 포화영역 이동도를 얻을 수 있었으며, 또한 드레인 전압을 -5V로 하고, 게이트 전압을 3 V에서 -10 V 까지 인가하였을 때 3×105의 전멸 비를 얻을 수 있었다.
        4,000원
        169.
        2010.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A hierarchical computational method has been developed and used with finite element method based on dislocation density multiple-slip crystalline formulation to predict how nanoindentation affects behavior in face-centered cubic crystalline aggregates. Using displacement profiles which were obtained from molecular dynamics(MD) nanoindentation simulation, scaling relations based on indentation depths, grain-sizes, and grain aggregate distributions were obtained. These relations then applied to coarsen grains in micros- tructurally based FE formulation which accounts for dislocation density evolution, crystalline structures. This computational regime was validated with a several experimental results related to single gold crystals. This hierarchical model provides a tool to link nanosacle level with a microstructurally based FEM formulation that can be to ascertain inelastic effects such as dislocation density evolution. With the above certainty temperature distribution during the nanoindentation simulation also was investigated along with the different indentation depth.
        4,000원
        170.
        2009.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Transparent ITO films were deposited on a polycarbonate substrate with RF magnetron sputtering in a pure argon(Ar) and oxygen (O2) gas atmosphere, and then post deposition electro annealed for 20 minutes in a 4×10-1Pa vacuum. Electronbombardment with an accelerating voltage of 100V increased the substrate temperature to 120oC. XRD analysis of the depositedITO films did not show any diffraction peaks, while electro annealed films indicated the growth of crystallites on the (211), (222),and (400) planes. The sheet resistance of ITO films decreased from 103 to 82Ω/□. The optical transmittance of ITO films inthe visible wavelength region increased from 85 to 87%. Observation of the work function demonstrated that the electro-annealingincreased the work function of ITO films from 4.4 to 4.6eV. The electro annealed films demonstrated a larger figure of meritof 3.0×10-3Ω-1 than that of as deposited films. Therefore, the electro annealed films had better optoelectrical performances thanas deposited ITO films.
        4,000원
        171.
        2009.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Metal thin film patterns on a LTCC substrate, which was connected through inner via and metal paste for electrical signals, were formed by a screen printing process that used electric paste, such as silver and copper, in a conventional method. This method brought about many problems, such as non uniform thickness in printing, large line spaces, and non-clearance. As a result of these problems, it was very difficult to perform fine and high resolution for high frequency signals. In this study, the electric signal patterns were formed with the sputtered metal thin films (Ti, Cu) on an LTCC substrate that was coated with protective oxide layers, such as TiO2 and SiO2. These electric signal patterns' morphology, surface bonding strength, and effect on electro plating were also investigated. After putting a sold ball on the sputtered metal thin films, their adhesion strength on the LTCC substrate was also evaluated. The protective oxide layers were found to play important roles in creating a strong design for electric components and integrating circuit modules in high frequency ranges.
        4,000원
        172.
        2009.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The electrolyte effects of the electroplating solution in Cu films grown by ElectroPlating Deposition(EPD) were investigated. The electroplated Cu films were deposited on the Cu(20 nm)/Ti (20 nm)/p-type Si(100) substrate. Potentiostatic electrodeposition was carried out using three terminal methods: 1) an Ag/AgCl reference electrode, 2) a platinum plate as a counter electrode, and 3) a seed layer as a working electrode. In this study, we changed the concentration of a plating electrolyte that was composed of CuSO4, H2SO4 and HCl. The resistivity was measured with a four-point probe and the material properties were investigated by using XRD(X-ray Diffraction), an AFM(Atomic Force Microscope), a FE-SEM(Field Emission Scanning Electron Microscope) and an XPS(X-ray Photoelectron Spectroscopy). From the results, we concluded that the increase of the concentration of electrolytes led to the increase of the film density and the decrease of the electrical resistivity of the electroplated Cu film.
        4,000원
        173.
        2009.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Titanium dioxide thin films were fabricated as hydrogen sensors and its sensing properties were tested. The titanium was deposited on a SiO2/Si substrate by the DC magnetron sputtering method and was oxidized at an optimized temperature of 850˚C in air. The titanium film originally had smooth surface morphology, but the film agglomerated to nano-size grains when the temperature reached oxidation temperature where it formed titanium oxide with a rutile structure. The oxide thin film formed by grains of tens of nanometers size also showed many short cracks and voids between the grains. The response to 1% hydrogen gas was ~2×106 at the optimum sensing temperature of 200˚C, and ~103 at room temperature. This extremely high sensitivity of the thin film to hydrogen was due partly to the porous structure of the nano-sized sensing particles. Other sensor properties were also examined.
        4,000원
        174.
        2009.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Changes in the surface morphology and light scattering of textured Al doped ZnO thin films on glasssubstrates prepared by rf magnetron sputtering were investigated. As-deposited ZnO:Al films show a hightransmittance of above 80% in the visible range and a low electrical resistivity of 4.5×10-4Ω·cm. The surfacemorphology of textured ZnO:Al films are closely dependent on the deposition parameters of heater temperature,working pressure, and etching time in the etching process. The optimized surface morphology with a cratershape is obtained at a heater temperature of 350oC, working pressure of 0.5 mtorr, and etching time of 45seconds. The optical properties of light transmittance, haze, and angular distribution function (ADF) aresignificantly affected by the resulting surface morphologies of textured films. The film surfaces, havinguniformly size-distributed craters, represent good light scattering properties of high haze and ADF values.Compared with commercial Asahi U (SnO2:F) substrates, the suitability of textured ZnO:Al films as frontelectrode material for amorphous silicon thin film solar cells is also estimated with respect to electrical andoptical properties.
        4,000원
        175.
        2009.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Silicon dioxide as gate dielectrics was grown at 400˚C on a polycrystalline Si substrate by inductively coupled plasma oxidation using a mixture of O2 and N2O to improve the performance of polycrystalline Si thin film transistors. In conventional high-temperature N2O annealing, nitrogen can be supplied to the Si/SiO2 interface because a NO molecule can diffuse through the oxide. However, it was found that nitrogen cannot be supplied to the Si/SiO2 interface by plasma oxidation as the N2O molecule is broken in the plasma and because a dense Si-N bond is formed at the SiO2 surface, preventing further diffusion of nitrogen into the oxide. Nitrogen was added to the Si/SiO2 interface by the plasma oxidation of mixtures of O2/N2O gas, leading to an enhancement of the field effect mobility of polycrystalline Si TFTs due to the reduction in the number of trap densities at the interface and at the Si grain boundaries due to nitrogen passivation.
        4,000원
        176.
        2009.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Indium Gallium Zinc Oxide (IGZO) thin films were deposited onto 300 nm-thick oxidized Si substrates and glass substrates by direct current (DC) magnetron sputtering of IGZO targets at room temperature. FESEM and XRD analyses indicate that non-annealed and annealed IGZO thin films exhibit an amorphous structure. To investigate the effect of an annealing treatment, the films were thermally treated at 300˚C for 1hr in air. The IGZO TFTs structure was a bottom-gate type in which electrodes were deposited by the DC magnetron sputtering of Ti and Au targets at room temperature. The non-annealed and annealed IGZO TFTs exhibit an Ion/Ioff ratio of more than 105. The saturation mobility and threshold voltage of nonannealed IGZO TFTs was 4.92×10-1cm2/V·s and 1.46V, respectively, whereas these values for the annealed TFTs were 1.49×10-1cm2/V· and 15.43V, respectively. It is believed that an increase in the surface roughness after an annealing treatment degrades the quality of the device. The transmittances of the IGZO thin films were approximately 80%. These results demonstrate that IGZO thin films are suitable for use as transparent thin film transistors (TTFTs).
        3,000원
        177.
        2008.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Electrical properties of multi-channel metal-induced unilaterally precrystallized polycrystalline silicon thin-film transistor (MIUP poly-Si TFT) devices and circuits were investigated. Although their structure was integrated into small area, reducing annealing process time for fuller crystallization than that of conventional crystal filtered MIUP poly-Si TFTs, the multi-channel MIUP poly-Si TFTs showed the effect of crystal filtering. The multi-channel MIUP poly-Si TFTs showed a higher carrier mobility of more than 1.5 times that of the conventional MIUP poly-Si TFTs. Moreover, PMOS inverters consisting of the multi-channel MIUP poly-Si TFTs showed high dynamic performance compared with inverters consisting of the conventional MIUP poly-Si TFTs.
        3,000원
        178.
        2008.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 용액 공정을 이용한 고분자 절연층을 갖는 top-gate 구조의 펜타센 박막 트랜지스터(Thin Film Transistor, TFT)의 특성을 연구하였다. Top-gate 구조의 펜타센 TFT 제작에 앞서 유기 반도체인 펜타센의 결정성 성장을 돕기 위해서 가교된 PVP (cross-linked poly(4-vinylphenol))를 유리 기판 상에 스핀 코팅을 이용하여 형성한 후, 노광 공정을 통해 니켈/은 구조를 갖는 채널 길이 10μm의 소오스, 드레인 전극을 형성하였다. 그리고 열 증착을 이용하여 60 nm 두께의 펜타센 층을 성막하였고, 고분자 절연체로서 PVA(polyvinyl alchol) 또는 가교된 PVA를 용액공정인 스핀 코팅을 이용하여 형성한 후 열 증착으로 알루미늄 게이트 전극을 성막하였다. 이로써 제작된 소자들의 전기적 특성을 확인한 결과 가교된 PVA를 사용한 펜타센 TFT 보다 PVA를 게이트 절연체로 사용한 소자가 전기적 특성이 우수한 것으로 관찰되었다. 이는 PVA의 가교 공정에 의한 펜타센 박막의 성능 퇴화에 기인한 것으로 사료된다. 실험 결과 0.9μm 두께의 PVA 게이트 절연막을 사용한 top-gate 구조의 펜타센 TFT의 전계 효과 이동도와 문턱전압, 그리고 전류 점멸비는 각각, 약 3.9×10-3 cm2/Vs, -11.5 V, 3×105으로써 본 연구에서 제안된 소자가 용액 공정형 top-gate 유기 TFT 소자로서 우수한 성능을 나타냄을 알 수 있었다.
        4,000원
        179.
        2008.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Single crystal ZnIn2S4 layers were grown on thoroughly etched semi-insulating GaAs(100) substrateat 450oC with hot wall epitaxy (HWE) system by evaporating ZnIn2S4 source at 610oC. The crystalline structureof the single crystal thin films was investigated by the photoluminescence (PL) and double crystal X-ray rockingcurve (DCRC). The temperature dependence of the energy band gap of the ZnIn2S4 obtained from theabsorption spectra was well described by the Varshni’s relation, Eg(T)=2.9514eV-(7.24×10−4eV/K)T2/(T+489K). After the as-grown ZnIn2S4 single crystal thin films were annealed in Zn-, S-, and In-atmospheres, theorigin of point defects of ZnIn2S4 single crystal thin films has been investigated by the photoluminescence (PL)at 10K. The native defects of VZn, VS, Znint, and Sint obtained by PL measurements were classified as a donorsor acceptors type. And we concluded that the heat-treatment in the S-atmosphere converted ZnIn2S4 singlecrystal thin films to an optical p-type. Also, we confirmed that In in ZnIn2S4/GaAs did not form the nativedefects because In in ZnIn2S4 single crystal thin films existed in the form of stable bonds.
        4,000원
        180.
        2008.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this paper, a novel non-vacuum technique is described for the fabrication of a CuInSe2 (CIS) absorber layer for thin film solar cells using a low-cost precursor solution. A solution containing Cu- and Inrelated chemicals was coated onto a Mo/glass substrate using the Doctor blade method and the precursor layer was then selenized in an evaporation chamber. The precursor layer was found to be composed of CuCl crystals and amorphous In compound, which were completely converted to chalcopyrite CIS phase by the selenization process. Morphological, crystallographic and compositional analyses were performed at each step of the fabrication process by SEM, XRD and EDS, respectively.
        3,000원