검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 518

        1.
        2024.04 구독 인증기관·개인회원 무료
        콘크리트 구조의 인장 보강재로 주로 사용되는 철근은 높은 인장강도와 연성이 우수한 변형 특성에 도 불구하고 부식이 발생할 수 있다는 단점을 갖고 있다. 이러한 문제점을 개선하기 위하여 부식이 발 생하지 않는 다양한 재료 중 FRP(Fiber Reinforced Polymer)를 철근과 유사한 형태의 Rod로 제작하 여 철근을 대체하는 보강재로 사용하기 위한 연구가 진행되고 있다. 그중에서도 인장강도가 우수한 탄 소 및 유리섬유를 일방향으로 성형하고 Rod 표면을 굴곡 처리한 CFRP 및 GFRP 보강근을 중심으로 콘크리트 구조에 적용하기 위한 연구가 활발하게 진행되고 있다. 이 연구에서는 FRP Rod를 보강근으 로 하는 콘크리트 부재의 부착특성과 균열폭, 처짐과 같은 사용성 평가에 중요한 역할을 하는 인장강 화효과를 포함한 균열거동 특성을 파악하기 위하여 단변의 피복두께와 FRP 보강근 지름의 비를 1.0에 서 3.5 까지 0.5배씩 증가하는 직사각형 단면을 갖는 길이 1,000mm의 인장부재를 제작하여 만능재료 시험기(Universal Testing Machine)를 이용한 직접인장실험을 수행한 후, 피복두께와 FRP 보강근의 지름 비에 따른 균열거동(Cracking Behavior) 및 인장강화효과(Tension Stiffening Effect)를 분석하고 현행 설계기준의 규정과 비교하였다. 작용하중에 따라 발생하는 균열에 대해서 횡방향균열(Transverse Crack)과 쪼갬균열(Splitting Crack)로 각각 구분하고, DAQ(Data Acquisition) 시스템을 이용하여 콘 크리트 인장부재에 매입된 CFRP 및 GFRP 보강근의 변형량 및 작용하중을 측정하였으며, 그 결과로 부터 하중-변형률 관계로 대표되는 인장강화효과를 분석하였다. 균열거동 및 인장강화효과를 분석한 결과, CFRP 또는 GFRP Rod를 보강근으로 하는 콘크리트 인장부재는 FRP 보강근과 콘크리트의 부 착강도를 감소시키는 쪼갬균열이 발생하지 않도록 피복두께를 보강근 지름의 2.5배 이상 확보하였을 때, 각 보강근별로 극한강도 fu의 60-70%에 해당하는 하중이 작용하는 단계에서 인장강화효과는 우 수한 것으로 나타났으며, 철근을 보강근으로 하는 현행 설계기준의 규정으로 예측한 결과보다 우수한 인장강화효과를 얻을 수 있음을 확인하였다.
        2.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper aims to advance our understanding of extensible beams with multiple cracks by presenting a crack energy and motion equation, and mathematically justifying the energy functions of axial and bending deformations caused by cracks. Utilizing an extended form of Hamilton's principle, we derive a normalized governing equation for the motion of the extensible beam, taking into account crack energy. To achieve a closed-form solution of the beam equation, we employ a simple approach that incorporates the crack's patching condition into the eigenvalue problem associated with the linear part of the governing equation. This methodology not only yields a valuable eigenmode function but also significantly enhances our understanding of the dynamics of cracked extensible beams. Furthermore, we derive a governing equation that is an ordinary differential equation concerning time, based on orthogonal eigenmodes. This research lays the foundation for further studies, including experimental validations, applications, and the study of damage estimation and detection in the presence of cracks.
        4,000원
        3.
        2024.03 구독 인증기관·개인회원 무료
        The purpose of this study is to review the available literature on the effectiveness of fibers in preventing early-age shrinkage cracking on cementitious concrete. The overview describes the widely used ASTM C1579 (Standard Test Method for Evaluating Plastic Shrinkage Cracking of Restrained Fiber Reinforced Concrete (Using a Steel Form Insert) for plastic shrinkage cracking. The past literature used crack length, width, or area to describe and quantify cracks on concrete specimens. To keep things simple, this review expresses the length, width or area as a percentage of the control specimen. Finally, the study establishes a relationship between fiber volume and aspect ratio on plastic shrinkage and compressive strength of concrete. It was concluded that fiber is sufficient enough to mitigate plastic shrinkage cracking. An increase in fiber volume and aspect ratio reduces the early-age cracking of concrete but harm its compressive strength.
        4.
        2024.03 구독 인증기관·개인회원 무료
        In the contemporary era, 3D printing technology has become widely utilized across diverse fields, including biomedicine, industrial design, manufacturing, food processing, aerospace, and construction engineering. The inherent advantages of automation, precision, and speed associated with 3D printing have progressively led to its incorporation into road engineering. Asphalt, a temperature-responsive material that softens at high temperatures and solidifies as it cools, presents distinctive challenges and opportunities in this context. For the effective implementation of 3D printing technology in road engineering, 3D printed asphalt (3DPA) must exhibit favorable performance and printability. This requires attributes such as good fluidity, extrudability, and buildability. Furthermore, materials utilizing 3DPA for crack repair should possess high viscosity, elasticity, toughness, superior high-temperature stability, and resistance to low-temperature cracking. These characteristics ultimately contribute to enhancing pavement longevity and ensuring worker safety.
        5.
        2024.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, in newly constructed apartment buildings, the exterior wall structures have been characterized by thinness, having various openings, and a significantly low reinforcement ratio. In this study, a nonlinear finite element analysis was performed to investigate the crack damage characteristics of the exterior wall structure. The limited analysis models for a 10-story exterior wall were constructed based on the prototype apartment building, and nonlinear static analysis (push-over analysis) was performed. Based on the finite element (FE) analysis model, the parametric study was conducted to investigate the effects of various design parameters on the strength and crack width of the exterior walls. As the parameters, the vertical reinforcement ratio and horizontal reinforcement ratio of the wall, as well as the uniformly distributed longitudinal reinforcement ratio and shear reinforcement ratio of the connection beam, were addressed. The analysis results showed that the strength and deformation capacity of the prototype exterior walls were limited by the failure of the connection beam prior to the flexural yielding of the walls. Thus, the increase of wall reinforcement limitedly affected the failure modes, peak strengths, and crack damages. On the other hand, when the reinforcement ratio of the connection beams was increased, the peak strength was increased due to the increase in the load-carrying capacity of the connection beams. Further, the crack damage index decreased as the reinforcement ratio of the connection beam increased. In particular, it was more effective to increase the uniformly distributed longitudinal reinforcement ratio in the connection beams to decrease the crack damage of the coupling beams, regardless of the type of the prototype exterior walls.
        4,200원
        6.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 추가적인 장비 없이 UAV만을 사용한 균열폭 측정 및 균열의 3차원 재구성 방법을 제안한다. UAV 사진측량법 및 CNN을이용한 균열의 3차원 재구성 및 균열폭 측정 검증을 위해 5곳의 균열이 존재하는 벽면을 대상으로 균열의 3차원 재구성을 하였 으며 UAV와 균열 사이의 거리 4가지에 대해 균열폭을 측정하고 균열 현미경 측정값과 비교하여 정확성을 검증하였다. 대부분의 균열 에서 균열폭을 정확히 측정하였으나 균열폭이 0.5mm보다 작은 경우와 벽면이 심하게 그늘져 어두운 곳에서는 측정 유효성이 떨어지 는 결과를 보였다.
        4,000원
        7.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, In this study, structural analysis of a fuel tank for an SUV (sports utility vehicle) was performed for crack prevention design. Reservoir tank analysis was conducted for crack prevention design, and improvement measures for weak areas were discovered and reflected in the design. Pressure analysis was performed on the existing model to analyze weak areas. As a result of analysis through various design changes, it was found that the strength problem of the reservoir tank was due to the discontinuity of the rib inside the tank, and to improve this, it was necessary to minimize the discontinuity section.
        4,000원
        15.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        With the increasing number of aging buildings across Korea, emerging maintenance technologies have surged. One such technology is the non-contact detection of concrete cracks via thermal images. This study aims to develop a technique that can accurately predict the depth of a crack by analyzing the temperature difference between the crack part and the normal part in the thermal image of the concrete. The research obtained temperature data through thermal imaging experiments and constructed a big data set including outdoor variables such as air temperature, illumination, and humidity that can influence temperature differences. Based on the collected data, the team designed an algorithm for learning and predicting the crack depth using machine learning. Initially, standardized crack specimens were used in experiments, and the big data was updated by specimens similar to actual cracks. Finally, a crack depth prediction technology was implemented using five regression analysis algorithms for approximately 24,000 data points. To confirm the practicality of the development technique, crack simulators with various shapes were added to the study.
        4,000원
        16.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The numeric-based Highway Pavement Management System (HPMS), along with an advanced three-dimensional pavement condition monitoring profiler vehicle (3DPM), in South Korea has presented remarkable advancements in pavement management since the early 2000. Based on these results, visual distress on pavement surfaces can be easily detected and analyzed. Additionally, the entire expressway pavement surface conditions in South Korea can be easily monitored using the current graphical user interface-based advanced information graphic (AIG) approach. Therefore, a critically negative pavement section can be detected and managed more easily and efficiently. However, the actual mechanical performance of the selected pavement layer still needs to be investigated in a more thorough manner not only to provide more accurate pavement performance results but also to verify the feasibility of the current 3DPM and AIG approaches. In this study, the low-temperature performance of the selected asphalt pavement layer section was evaluated to further verify and strengthen the feasibility of the current 3DPM and AIG approaches developed by the Korea Expressway Corporation. METHODS : Based on 3DPM and AIG approach, the positive and negative-riding-quality road sections were selected, respectively. The asphalt material cores were extracted from each section then bending beam rheometer mixture creep test was performed to measure their low-temperature properties. Based on the experimental results, thermal stress results were computed and visually compared. RESULTS : As expected, the asphalt material from the negative driving performance section presented a poorer low-temperature cracking resistance than that from the positive driving performance section. CONCLUSIONS : Current 3DPM equipment can successfully evaluate expressway surface conditions and the corresponding material performance quality. However, more extensive experimental studies are recommended to verify and strengthen the findings of this study
        4,000원
        17.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum alloy-based additive manufacturing (AM) has emerged as a popular manufacturing process for the fabrication of complex parts in the automotive and aerospace industries. The addition of an inoculant to aluminum alloy powder has been demonstrated to effectively reduce cracking by promoting the formation of equiaxed grains. However, the optimization of the AM process parameters remains challenging owing to their variability. In this study, the response surface methodology (RSM) was used to predict the crack density of AM-processed Al alloy samples. RSM was performed by setting the process parameters and equiaxed grain ratio, which influence crack propagation, as independent variables and designating crack density as a response variable. The RSM-based quadratic polynomial models for crack-density prediction were found to be highly accurate. The relationship among the process parameters, crack density, and equiaxed grain fraction was also investigated using RSM. The findings of this study highlight the efficacy of RSM as a reliable approach for optimizing the properties of AM-processed parts with limited experimental data. These results can contribute to the development of robust AM processing strategies for the fabrication of highquality Al alloy components for various applications.
        4,000원
        18.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        구조물의 안정성 및 이상 징후 판단에 있어 균열의 발생 여부와 진전 정도는 가장 기본적인 조사 항목이다. 본 연구 에서는 일반적인 스마트폰을 통해 균열 이미지를 촬영하고 이로 부터 균열 검출과 크기를 산정하는 균열 분석 시스템을 개발하 였다. 모폴로지 기법을 적용하되 투영변환 및 3차회선 보간, 히스토그램 기반의 명도 입계값 산정 기법을 적용함으로서 이미지 보정과 노이즈 제거 과정을 통한 효과적 균열 검출이 가능하였다. ArUco 마커를 통해 손쉽고 경제적인 균열 크기 산정이 가능 하였으며, 스마트폰 앱과 클라우드 서버 기반의 이원화 분석시스템을 통해 손쉬운 현장 적용성 및 처리 시간 단축, 세부 균열의 추적관리 가능성을 확인하였다. 개발 시스템을 이용한 실내 성능 평가를 수행한 결과, 균열 측정 오차는 0.03㎜ 미만으로 나타 났으며 조건별 다수 측정 결과에서 높은 재현성이 확인되었던바, 개발된 균열 분석 시스템의 정확성 및 현장 적용성을 예상할 수 있었다.
        4,000원
        20.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, a novel cast-in specialty insert was developed in Korea as an anchor for lightweight pipe supports, including fire-protection pipes. As these pipe supports and anchors play a critical role in transferring loads of fire-protection pipes to structural members, it is crucial to evaluate their seismic performance before applying the newly developed insert. In this study, the seismic shear performance of the insert anchors was evaluated through cyclic loading tests based on the loading protocols of ACI 355.2 and FEMA 461. Initially, five monotonic loading tests were conducted on the insert anchors in cracked concrete, followed by cyclic loading tests based on the monotonic test results. The findings revealed that the insert anchors exhibited negligible decrease in shear strength even after cyclic loading. Furthermore, a comparison of the maximum load and displacement of the insert anchors obtained under the loading protocols of ACI 355.2 and FEMA 461 was performed to investigate the applicability of the FEMA 461 loading protocol for anchor performance evaluation.
        4,000원
        1 2 3 4 5