The purpose of this study was to evaluate the corrosion damage of large diameter metallic pipes buried in reclaimed land due to the corrosion effect by soil, and to propose a method of installing metal pipes in the reclaimed land. The results are as follow. First, the soil of the reclaimed land was gray clay, the soil specific resistance indicating soil corrosiveness was at least 120 Ω-cm, the pH was weakly acidic(5.04 to 5.60), the redox potential was at least 62 mV, the moisture content was at most 48.8%, and chlorine ions and sulfate ions were up to 4,706.1 mg/kg and 420 mg/kg. Therefore, the overall soil corrosivity score was up to 19, and the external corrosion effect seems to be very large. Second, the condition of straight part of pipes was in good condition, but most of KP joints were affected by corrosion at a severe level. The reason for this seems to be that KP joints accelerated corrosion due to stress and crevice corrosion in addition to galvanic corrosion in the same environment. Third, as a result of evaluating correlations of each item that affects the corrosion on the external part, the lower the soil resistivity and redox potential, the greater the effect on the KP joints corrosion, and the moisture content, chloride ion, and sulfate ion, the higher the value, the greater the effect on the corrosion of KP joints. In addition, among soil corrosion items, the coefficient of determination of soil resistivity with corrosion of KP joints was the highest with 0.6439~0.7672. Fourth, when installing metal pipes or other accessories because the soil of the reclaimed land is highly corrosive, it is necessary to apply a corrosion preventive method to extend the life of pipes and prevent leakage accidents caused by corrosion damage to the joint.